annie

• The Pioneering Contributions of the ANNIE Experiment at Fermilab

Marvin Ascencio-Sosa On behalf of ANNIE collaboration

Prague, July, 2024

Accelerator Neutrino Neutron Interaction Experiment

ANNIE has 45 collaborators from 17 institutions in 6 countries

ANNIE is a 26-ton Cherenkov neutrino detector in the BNB line at Fermilab.

ANNIE Goals

Detector R&D: Demonstrate novel neutrino detector technologies

- Fast Photosensors (LAPPDs)
- Novel target media (Gd-Water and WbLS)

Physics: Neutrino interaction with Gd-loaded water target focused on neutron yield

Accelerator Neutrino Neutron Interaction Experiment

Outline (Spoiler Alert!) ► ANNIE

Physics

Detector

- First beam neutrino experiment detected by gadolinium-loaded water. (2019)
- First neutrino experiment using Large **Area Picosecond Photodetectors** (LAPPD).(2022 & 2024 3-LAPPDs)
- First neutrino experiment using Water Base Liquid Scintillation (WbLS). (2023)

state neutrons. neutrino energy.

Multi-target cross-section measurements (⁴⁰Ar/H₂O). Same neutrino beam as SBN LArTPCs

- ν_{μ} CC differential cross section with water target, final
- ν NC interaction, background constraint for Long Baseline, p-decay, and DSNB searches.
- High flux (close to BNB) overlaps with HyperK/DUNE

ANNIE detector

Marvin Ascencio Sosa - Iowa State University

ANNIE detector

Marvin Ascencio Sosa - Iowa State University

ANNIE's Gd-Loaded water

The first application of Gd-loaded water on a neutrino beam

Gadolinium's average neutron capture cross-section is high compared with pure water.

Neutrons after thermalization, capture time: * Gd: \sim 30 µs (about **10 times** faster than in pure water)

Signature:

* Gd: ~ 8 MeV γ cascade (about 4 time higher) energy than single γ in water).

ANNIE's LAPPD

IOWA STATE **UNIVERSITY**

The first application of LAPPD in a **neutrino experiment**

- LAPPDs are 20 cm x 20 cm MCP-based photodetectors.
- Timing resolution ~ 50 ps.
- Spatial resolution ~ few mm.
- Dark rate < 1 Hz/mm² at room temperature.

ANNIE's LAPPD

World's first: neutrinos observed with multiple LAPPDs! Stay tuned; the paper is coming.

Imaging Photosensors!

What a single LAPPD can do?

ANNIE's Water-based Liquid Scintillator (WbLS)

- ANNIE is the first experiment to detect beam neutrinos in WbLS!

IOWA STATE

The ANNIE experiment achieved several milestones: • First detection of beam neutrinos in Gd-loaded water First detection of beam neutrinos using LAPPDs First detection of beam neutrinos in WbLS

With these technologies in place, ANNIE is poised to make high-impact neutrino cross-section measurements and ratios with LAr targets.

Future plans:

- Re-deploy the WbLS
- Add more LAPPDs

Stay Tuned!

Summary

Thank you!

Back up

Marvin Ascencio Sosa - Iowa State University

PHYSICAL REVIEW D **79**, 072002 (2009)

ANNIE is placed on-axis in the BNB beamline at Fermilab. Neutrino energy is around 800 MeV.

ANNIE Experiment

ANNIE's physics

CCQE Neutron multiplicity

cross-sections. (oxygen & argon cross-section comparison). NC interactions: background for Long-baseline oscillation experiments **Diffuse Supernova Neutrino searches** Proton decay searches

Neutron multiplicity from CC interactions and differential

ANNIE shares the BNB with several liquid-argon experiments

Water-based Liquid Scintillator (WbLS)

- Cherenkov signals.
- 2) Enhanced neutron signals.
- Studying possible Gd-loading.

We will see in ANNIE

WbLS: We are using 99% water, 0.5% surfactant, 0.5% organic solvent Linear Alkyl Benzen (LAB), and 2,5-Diphenyloxazole (PPO) as fluor.

Allows hybrid detection of scintillation and (unabsorbed)

1) Enhanced neutrino energy reconstruction.

WbLS for ANNIE produced at BNL (M. Yeh).

time (ns)

30

ANNIE's WbLS (First Results & Prospects)

- "SANDI" acrylic vessel with 365kg of WbLS
- 2 months: few 10³ events
- Selecting neutrino candidates with (no) Front Muon Veto and track in Muon Range Detector.
- New population of electrons in WbLS produces significantly more photons than electrons in water

Large Area Picosecond Photo Detector (LAPPD)

Nuclear Inst. and Methods in Physics Research, A 936 (2019) 527-531

- coated capillary pores.
- differential timing information.
- Excellent position resolution (sub-cm scale) and timing (< 100 psec).

LAPPDs are 20 x 20 cm tiles based on microchannel plates (MCPs) detectors. Each MCP is a borosilicate glass structure with millions of 20-micron-diameter

The LAPPD contains 28 anode strip lines with double-sided readout mechanics, which enables a reconstruction of the photon hit on the

ANNIE water system

From Vincent Fischer

ANNIE AmBe setup

1) AmBe PMT waveforms trigger data acquisition

> From Gian Caceres

ANNIE Laser setup

Code updates in detail

ANNIE DAQ

Requires a precise neutrino energy reconstruction

 $N(E_{\text{reco}}) \sim \phi(E) \times P(E) \times \sigma(E) \times f_{\sigma}(E, E_{\text{reco}})$

 δ CP oscillation parameter requires $\nu/\bar{\nu}$ events comparison. The number of final state neutrons impacts the hadronic recoil energy.

