Hadron Production Measurements at NA61/SHINE for Neutrino Oscillation Experiments

July 19th, 2024

Kyle Allison, University of Colorado Boulder

Uncertainties in Long-Baseline Experiments

- Large uncertainties in predicted neutrino beam properties, if they are not constrained (~20-40%)
 - Inclusion of NA61/SHINE data significantly constrains hadron interaction uncertainty

NA61/SHINE

NA61 = North Area experiment 61 SHINE = SPS (super proton synchrotron) Heavy Ion and Neutrino Experiment

- Multi-focus experiment
 - Heavy Ion
 - Deconfinement, quark-gluon plasma
 - Cosmic rays
 - Neutrino
 - Measure multiplicity of particles produced in hadronic interactions

NA61/SHINE Detector

- 8 Time Projection Chambers (TPCs) + 2 magnets
- Time-of-Flight walls (ToF)
- Beam counters and Beam Position Detectors (BPDs)
- Projectile Spectator Detectors (PSDs)

4

NA61/SHINE Detector

Neutrino Program at NA61/SHINE

- Dedicated hadron production measurements for long-baseline neutrino oscillation experiments
 - DUNE, T2K, NOvA, ...
- Thin target:
 - Production, inelastic, and total cross sections
 - Differential hadron yields from proton-nucleus interactions
 - Can be incorporated directly into interaction generators
 - Reweight neutrino beam flux simulations
- Replica Target:
 - Differential hadron yields from target surface
 - Directly constrain neutrino beam flux simulations
 - No need to simulate secondary + tertiary interactions inside the target
 - Beam attenuation

NuMI replica target.

NA61/SHINE Measurements

- T2K beamline uses 31 GeV/c protons ٠
- NuMI for NOvA uses 120 GeV/c protons ٠
- LBNF for DUNE will use 120 GeV/c protons ٠

2007-2010	Long Shutdown 1 (LS1)	2015-2018	LS2	2022-2025	LS3	2027-?
T2K: 31 GeV/c protons	K: NuMI: GeV/c protons 120, 90, 60 GeV/c protons			T2K: 31 GeV/c protons		

60 GeV/c pions

NuMI, LBNF/DUNE 120 GeV/c protons 60 GeV/c kaons

Measurements for T2K

- 31 GeV/c protons on a thin carbon target:
 - Total cross-section and π^{\pm} differential multiplicity measurements
 - Phys. Rev. C84 (2011) 034604
 - K⁺
 - Phys. Rev. C85 (2012) 035210
 - K^{0}_{s} and Λ
 - Phys. Rev. C89 (2014) 025205
 - Total cross-section and π^{\pm} , K[±], p, K⁰s, and A
 - Eur. Phys. J. C76 (2016) 84

1.5 cm thin carbon target

Measurements for T2K

- 31 GeV/c protons on a T2K replica target:
 - π^{\pm} , p, and K[±]
 - Eur. Phys. J. C79 100 (2019)
 - p beam survival probability
 - Phys. Rev. D103 012006 (2021)
- Application of NA61/SHINE measurements to T2K:
 - Phys. Rev. D87 012001 (2013) -

 $\xrightarrow{\mathbf{p}} \overbrace{Z1}^{\underline{18cm}} \overbrace{Z2}^{\underline{1}} \overbrace{Z3}^{\underline{1}} \overbrace{Z4}^{\underline{1}} \overbrace{Z5}^{\underline{1}} \overbrace{Z5}^{\underline{1}} \overbrace{Z6}^{\underline{18cm}}$

- Ongoing:
 - 18 times higher stats replica target data from 2022

Measurements for Fermilab Experiments

- Thin target:
 - 120 GeV/c proton-carbon: π^{\pm} , K[±], p/ \overline{p} , K⁰_s, A, and \overline{A}
 - Phys. Rev. D108 072013 (2023)
 - Phys. Rev. D107 072004 (2023)
 - 90 GeV/c proton-carbon: π^{\pm} , K[±], p/ \overline{p} , K⁰s, A, and \overline{A}
 - Preparing paper + data release
 - 60 GeV/c π^+ -beryllium and π^+ -carbon: π^{\pm} , K[±], p/ \overline{p} , K⁰_s, Λ , and $\overline{\Lambda}$
 - Phys. Rev. D100 112004 (2019)
 - 120 GeV/c proton-beryllium cross sections
 - Phys. Rev. D100 112001 (2019)
 - 60 GeV/c proton-aluminum, proton-beryllium, proton-carbon thin target cross sections
 - Phys. Rev. D100 112001 (2019)
- Ongoing:
 - Replica target:
 - 120 GeV/c proton-NuMI replica target
 - Thin target:
 - 120 GeV/c proton-titanium
 - 60 GeV/c K⁺-carbon

NuMI replica target.

- Combined two datasets for one measurement
 - Neutral hadrons: K^{0}_{s} , Λ , $\overline{\Lambda}$

Phys. Rev. D107 072004 (2023)

- Combined two datasets for one measurement
 - Charged hadrons: π^{\pm} , p/p, and K[±]

Phys. Rev. D108 072013 (2023)

- Neutral hadrons: K^{0}_{S} , Λ , $\overline{\Lambda}$
 - New result: Paper in progress
 - Constrain secondary + tertiary interactions

- Charged hadrons: π^{\pm} , p/p, and K[±]
 - New result: Paper in progress
 - Constrain secondary + tertiary interactions

DUNE Prototype Target

- Data taking by NA61/SHINE summer 2024
- 120 GeV/c proton beam
- DUNE prototype replica target designed by Rutherford Appleton Laboratory
 - 150 cm long, 0.8 cm radius
- Differential multiplicities, beam attenuation

DUNE prototype replica target

DUNE prototype replica target

Post Long Shutdown 3 (2027+)

- Low energy beam line (2-13 GeV/c)
 - Currently limited to a minimum of ~13 GeV/c
 - Accelerator-based neutrino experiments
 - Low-E secondaries for second oscillation maximum
 - Atmospheric neutrino flux
 - Applicable for DUNE
 - Spallation neutron source neutrino experiments
 - COHERENT (proton <2 GeV)
 - JSNS² (proton at 3 GeV)
 - Muon experiments
 - COMET (proton at 8 GeV)
- Link to: NA61++/SHINE open workshop

SPSC-M-793 https://cds.cern.ch/record/2810696 G. Barr and L. Cook

Atmospheric neutrino flux uncertainties from p + N -> π^{\pm} + X

Green: Current Uncertainty Purple: Uncertainty with low-energy data from NA61/SHINE

Summary

- NA61/SHINE provides vital hadron production measurements
 - Significantly constrained T2K neutrino flux uncertainties
- Recent 120 GeV/c proton-carbon multiplicity results
 - Work is being done to add the results to the flux predictions for NuMI and LBNF
- Preliminary 90 GeV/c proton-carbon multiplicity results
 - Paper + release of results coming soon
- DUNE prototype replica target data currently being taken
- Exciting opportunities post Long Shutdown 3

Thanks!

Office of Science

Cosmic Rays and Heavy Ion Physics

- Heavy Ion Physics:
 - Onset of deconfinement:
 - Quark-gluon-plasma creation
 - Critical point search
- Cosmic Rays:
 - Nuclear fragmentation data to aid cosmic ray simulations
 - Anti-deuteron production

Marek Gazdzicki, 2020 SHINE Autumn School

Sample pC@120 GeV/c Event in NA61/SHINE

• Uncertainties typically on the 5-15% level

