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Two energy regimes

● Flux from π± and K± decay

● Constrained at 5-10% by 
dedicated experiments

● Primary interest in oscillation + 
secondary XSEC, BSM goals

● Flux from K± and charmed 
meson decay

● Unmeasured, the production 
mechanism is of interest

● XSEC and BSM searches are 
also primary goals

Few-GeV TeV
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We don’t understand the flux or the cross section 
that well at either few-GeV or TeV energies…

…so, how can the degeneracy be broken?
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Specific processes with a known cross section 
to break the degeneracy with the flux

Powerful beams at current and future 
experiments make small signals accessible

● νl+e-→νl+e- elastic scattering

● Inverse muon decay: νμ + e- →μ- + νe

● The low-ν method

● …?

Standard candles?

“ν” refers to energy 
transfer. Here I’ll use q0 to 

denote energy transfer, 
and low-ν for the method
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● Comes from the observation that if q0/Eν << 1, the cross 
section is approximately constant with Eν

● The rate as a function of Eν gives access to the flux shape

● Very closely linked to the “low-y” (y = q0/Eν) method [2]

The low-ν method [1,2]

[1] S. R. Mishra in Workshop on Hadron Structure Functions and 
Parton Distributions, 84 , p84. World Scientific, 1990
[2] R. Belusevic and D. Rein Phys. Rev. D 38 (1988) 2753–2757

DIS
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The method works if:

1) There is a low-q0 region with a constant cross section in Eν

2) It can be selected without significant model dependence

3) It provides a useful number of events

DIS

Low-ν method requirements
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Part I: few-GeV energies
(the worst of methods)

EPJC 82, 808 (2022) 
arXiv:2203.11821 [hep-ph]

https://arxiv.org/abs/2203.11821
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Accelerator neutrino experiments

Few-GeV νμ or 
νμ beam

~100-1000 km 
baseline

Observable 
particles

μ±

νμ

(      )

Event rate
Neutrino flux
Cross section 
Detector smearing
Oscillation probability
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The method works if:

1) There is a low-q0 region with a constant cross section in Eν

2) It can be selected without significant model dependence

3) It provides a useful number of events

DIS

Low-ν method requirements
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Is the low-q0 cross section flat in Eν?

νμ-40Ar, q0 ≤ 0.3 GeV

νμ-40Ar, q0 ≤ 0.3 GeV

QE

RES

DIS

● GENIEv3 (10a-02-11a)

● A common “base model” 
for experiments

● Dominated by QE, 
2p2h, and RES

● XSEC does not become 
constant until ≥ 5 GeV

(Also studied for 
hydrocarbons)
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Compare a variety of 
new/commonly used 

generator models Normalize to a fixed point 
at high energy – where 

q0/Eν corrections are 
smallest

Take a ratio w.r.t a 
reference model

νμ-40Ar, q0 ≤ 0.3 GeV

Is the low-q0 cross section flat in Eν?
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νμ-40Ar, q0 ≤ 0.3 GeV

≥2% differences 
for Eν ≤ 5 GeV

≥5% differences 
for Eν ≤ 12 GeV

νμ-40Ar, q0 ≤ 0.3 GeV

Is the low-q0 cross section flat in Eν?

Large w.r.t a priori 
flux predictions
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● Eν is not known
● Not all hadrons are visible 

(detector dependent)
● Relevant, complex, nuclear 

dynamics
● I’ll show two variables here:

1)

2)

Can a low-q0 sample be experimentally selected?

θμ

Reconstructed 
hadronic energy

μ±
pμ

νμ

(      )

W± (q0, q3)

Perfect!

Miss neutrons
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● Even with perfect reco, complex 
q0 ↔ Ehad relationship

● Cannot infer q0 without 
assuming a model!

Can a low-q0 sample be experimentally selected?

νμ-40Ar
GENIEv3 10a

νμ-40Ar
GiBUU
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● Most detectors cannot recover 
energy lost to neutrons

● Significantly increases the 
smearing between q0↔ Ehad

Can a low-q0 sample be experimentally selected?

νμ-40Ar
GENIEv3 10a

νμ-40Ar
GiBUU

Situation worsens considerably if pion 
misreconstruction is included: EPJC 82 

(2022) 9, 808
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The method works if:

1) There is a low-q0 region with a           
    constant cross section in Eν

Few-GeV accelerator neutrino conclusions

νμ-40Ar, q0 ≤ 0.3 GeV

3) It provides a useful 
number of events

2) It can be selected without               
    significant model dependence

νμ-40Ar
GiBUU



18

Part II: TeV energies
(the best of methods)

PRD 109 (2024) 3, 033010
arXiv:2310.06520 [hep-ph]

https://arxiv.org/abs/2310.06520
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The Forward Physics Facility (FPF)

● Planned far-forward search experiment to be located 
617 m from the ATLAS collision point in HL-LHC era

● Rich physics program exploiting a previously unsampled 
(very low-x interactions) regime 

J. Phys. G 50 (2023) 3, 030501
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FPF neutrino physics

● First neutrino cross sections in 0.3 ≤ Eν ≤ 10 TeV, for all flavors

● A probe of far-forward hadron production, related to various 
QCD questions, and a host of BSM scenarios

● No other data available for hadron production in this regime

FASERν2

P
R

D
104, 113008 (2021)

J. Phys. G 50 (2023) 3, 030501
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Event rate
Neutrino flux
Cross section 
Detector smearing
Generic propagation effect

P
R

D
104, 113008 (2021)

J. Phys. G 50 (2023) 3, 030501
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The method works if:

1) There is a low-q0 region with a constant cross section in Eν

2) It can be selected without significant model dependence

3) It provides a useful number of events

DIS

Low-ν method requirements
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LE νμ-184W LE νμ-184W 

Is the low-q0 cross section flat in Eν?

νμ: relatively constant with Eν for q0 ≤ 20 GeV

νμ: within a few-% q0 ≤ 10 GeV 
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DIS

Resonant 
contribution

Faster fall off 
in XSEC for νμ

Is the low-q0 cross section flat in Eν?

LE νμ-184W LE νμ-184W 
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Is the low-q0 cross section flat in Eν?

Define low-ν region as:

● νμ CC [5 ≤] q0 ≤ 20 GeV

● νμ CC [5 ≤] q0 ≤ 10 GeV

LE νμ-184W LE νμ-184W 



26

νμ-184W νμ-184W 

● Two models:
● LE: low energy tuned model (accelerator community)
● HE: high energy tuned model (telescope community)

● Few-% non-linearity for νμ, LE/HE similar
● ~10% non-linearity for νμ, larger LE/HE differences

Is the low-q0 cross section flat in Eν?
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νμ-184W
Eν = 10 TeV

νμ-184W
Eν = 10 TeV 

● Smearing assumptions idealized, 
but follow FPF design docs

● Ehad cuts introduce a high-q0 tail

● Eν dependent to some extent

● More pronounced for νμ (≈10%) 
than νμ (≈1%)

Can a low-q0 sample be experimentally selected?
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νμ-184W νμ-184W 

● Low-Ehad sample cross sections ≈linear with Eν

● Slightly less flat for both νμ and νμ than low-q0 case

● Larger LE/HE differences: few-% for νμ, ≈10% for νμ

Can a low-q0 sample be experimentally selected?
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Low-ν sample event rate

● For 3000 fb-1 FPF exposure, FASERν2 low-ν gives 
O(10,000) νμ and O(1,000) νμ events

● Relationship between reco. and true Eν is fairly 
diagonal (dominated by Eμ)
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FASERν2 νμ flux constraint

● Fit templates with a fixed true Eν, 
binned in reco Eν

● Postfit normalizations and uncertainties 
give the flux constraint in true Eν bins

● Uncertainty due to model correction, 
but sufficient to resolve flux models

νμ CC(5 ≤ Ehad ≤ 20 GeV) 
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The method works if:

1) There is a low-q0 region with a           
    constant cross section in Eν

TeV neutrino conclusions

3) It provides a useful       
    number of events

νμ-184W 

2) It can be selected without        
    significant model dependence

νμ-184W 
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Backup
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● Widely known/used in accelerator neutrino community:
● CCFR, 30 ≤ Eν ≤ 360 GeV, 1985–1988*

● NuTeV, 30 ≤ Eν ≤ 360 GeV, 1996–1997*

● NOMAD, 3 ≤ Eν ≤ 100 GeV, 1995–1998*

● MINOS(+), 2 ≤ Eν ≤ 10 GeV, 2005–2016*

● MINERvA, 2 ≤ Eν ≤ 10 GeV, 2009–2019*

● Discussed for use in current/future precision experiments:
● MicroBooNE, 0.3 ≤ Eν ≤ 2 GeV, 2015–2021*
● DUNE, 1 ≤ Eν ≤ 5 GeV, 2030’s
● ...

History of the low-ν method

*all dates indicate 
data-taking periods
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QE RES DIS

Few-GeV cross sections are not well understood

● Large a priori uncertainties
● Broad Eν range in beam
● Multiple interaction processes 

→ not just DIS!
● Measureable states convolved 

by nuclear effects
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Few-GeV cross-section models

A variety of model predictions are on the market – use a variety to 
investigate potential for bias:
● GENIEv2 – used in many published results
● GENIEv3 10a and GENIEv3 10b – currently used by many active 

experiments (10a vs 10b have different FSI models)
● SUSAv2 and CRPA: state-of-the-art nuclear response modeling 

for pionless events (implemented in GENIE ~v3.2.0)
● NEUT: used by T2K
● NuWro: performs well w.r.t. world cross-section data
● GiBUU: sophisticated hadron-transport, di erent neutrino–nucleon ff

model, also performs well in world data comparisons
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FPF detectors

● FASER2: low-density magnetized tracker

● FASERν2: 20 t tungsten and nuclear emulsion

● FLArE: 10/100 t liquid argon TPC
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High-energy cross-section modeling

High energy (HE): JCAP 09 025 (2020), arXiv:2004.04756
● Developed for UHE, high-Q2 regime (neutrino telescopes)
● Use new NLO PDFs → NLO structure functions
● Include heavy quark contributions
● Non-DIS interactions are neglected

Low energy (LE): EPJST 230 (2021) 24, arXiv:2106.09381 
● Developed for few-GeV accelerator neutrino community
● DIS from Bodek-Yang model → tuned for low-Q2

● LO structure functions, use GRV98LO PDFs
● Contributions from heavy quarks not included
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νμ-184W νμ-184W 

● Low-Ehad sample cross sections ~linear with Eν

● Slightly less linear for both νμ and νμ than low-q0 case

● Larger LE/HE differences: few-% for νμ, ≈10% for νμ

Can a low-q0 sample be experimentally selected?
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FPF event rate

● Neutrino flux predictions* for three FPF detector options
Later I’ll only show FASERν2 (but all are in the paper)

● Shown for planned 3000 fb-1 HL-LHC run

● Cross section ≈linear with Eν

*PRD104, 113008 (2021)

SIBYLL+SIBYLL LE model
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Detector smearing
νμ-184W
Eν = 10 TeV

νμ-184W
Eν = 10 TeV 

● Assumptions follow FPF design docs

● Ehad ≈ q0 for central population

● Low Ehad tail from unobserved particles
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What about νμ?

● Much larger model correction uncertainty ≈stat. uncertainty
● Potentially still useful as a cross-check given the huge 

differences between competing FPF flux predictions
● Possible for a more advanced analysis to attempt to 

constrain Eν-dependence with data

νμ CC(5 ≤ Ehad ≤ 20 GeV) νμ CC(5 ≤ Ehad ≤ 10 GeV) 
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● The fitted flux shape has a 10-20% bin-to-bin uncertainties 
(although bins are correlated) 

● The fitted flux is corrected for Eν-dependence, the model 
correction uncertainty shows the full LE/HE difference

FPF νμ flux constraint
νμ CC(5 ≤ Ehad ≤ 20 GeV) 
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● The fitted flux shape has a 10-20% bin-to-bin uncertainties 
(although bins are strongly correlated) 

● The fitted flux is corrected for Eν-dependence, the model 
correction uncertainty shows the full LE/HE difference

Correlation matrix

FPF νμ flux constraint
νμ CC(5 ≤ Ehad ≤ 20 GeV) 
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Hadron production model selection

● True flux uses SIBYLL v2.3d for both 
light and charmed hadron production

● Black (gray) lines use EPOSLHC 
(DPMJET-III) for light (charmed) 
hadron production

νμ CC(5 ≤ Ehad ≤ 20 GeV) 

All fluxes from: PRD104, 113008 (2021)
SIBYLL v2.3d: PRD102, 063002 (2020)
EPOSLHC: PRC92, 034906 (2015)
DPMJET-III: arXiv:hep-ph/0012252



Neutrino-electron elastic scattering
● The known, but small, cross section can be used to constrain 

the flux. ~5000 LAr ND events/year

● A powerful additional tool for achieving DUNE’s sensitivities, 
and resolving flux↔cross section ambiguities

● Strong normalization contraint 
due to known XSEC

● Weak shape constraint due to 
detector smearing and beam 
divergence

5 years, 30 t LAr FV, 1.2 MW beam

P
R

D
 1

01
, 0

32
00

2 
(2

02
0)



47

Example: CCFR analysis

● CCFR use low-ν for 30 ≤ Eν ≤ 360 GeV

● EHAD is their q0 proxy, and their low-ν sample 
is EHAD ≤ 20 GeV

● To estimate the q0/Eν correction, they 
exclude EHAD ≤ 4 GeV because resonant 
events don’t have the correct scaling
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