Low- ν : a tale of two energies

It was the best of methods, it was the worst of methods, ...

ICHEP 2024, 18th July 2024

C. Wilkinson, S. Dolan, A. Garcia Soto, L. Pickering, C. Wret

Two energy regimes

- Flux from $\pi^{\scriptscriptstyle\pm}$ and K^{\scriptscriptstyle\pm} decay
- Constrained at 5-10% by dedicated experiments
- Primary interest in oscillation + secondary XSEC, BSM goals

- Flux from K[±] and charmed meson decay
- Unmeasured, the production mechanism is of interest
- XSEC and BSM searches are also primary goals

We don't understand the flux or the cross section that well at either few-GeV or TeV energies...

...so, how can the degeneracy be broken?

Standard candles?

Specific processes with a known cross section to break the degeneracy with the flux

Powerful beams at current and future experiments make small signals accessible

- $v_1 + e^- \rightarrow v_1 + e^-$ elastic scattering
- Inverse muon decay: ν_{μ} + $e^{-} \rightarrow \mu^{-} + \nu_{e}$
- The low-ν method

"ν" refers to energy transfer. Here I'll use q₀ to denote energy transfer, and low-ν for the method

The low-v method [1,2]

- Comes from the observation that if $q_0/E_v << 1$, the cross section is approximately constant with E_v
- The rate as a function of E_{ν} gives access to the flux shape
- Very closely linked to the "low-y" ($y = q_0/E_v$) method [2]

[1] S. R. Mishra in Workshop on Hadron Structure Functions and Parton Distributions, 84, p84. World Scientific, 1990
[2] R. Belusevic and D. Rein Phys. Rev. D 38 (1988) 2753–2757

Low-v method requirements

The method works if:

1) There is a low-q₀ region with a constant cross section in E_{ν}

2) It can be selected without significant model dependence

3) It provides a useful number of events

Part I: few-GeV energies (the worst of methods)

EPJC **82**, 808 (2022) arXiv:2203.11821 [hep-ph]

Accelerator neutrino experiments

Low-v method requirements

The method works if:

1) There is a low-q₀ region with a constant cross section in E_{ν}

2) It can be selected without significant model dependence

3) It provides a useful number of events

Is the low-q₀ cross section flat in E_{ν} ?

Is the low-q₀ cross section flat in E_{ν} ?

Compare a variety of new/commonly used generator models

Normalize to a fixed point at high energy – where q_0/E_v corrections are smallest Take a ratio w.r.t a reference model

Is the low-q₀ cross section flat in E_{ν} ?

- E_{ν} is not known
- Not all hadrons are visible (detector dependent)
- Relevant, complex, nuclear dynamics
- I'll show two variables here:

Reconstructed hadronic energy

1)
$$E_{\text{had}}^{\text{true}} = \left(\sum_{i=n,p} E_{\text{kin}}^{i}\right) + \left(\sum_{i=\pi^{\pm},\pi^{0},\gamma} E_{\text{total}}^{i}\right)$$
 Perfect!
2) $E_{\text{had}}^{\text{reco}} = \left(\sum_{i=p} E_{\text{kin}}^{i}\right) + \left(\sum_{i=\pi^{\pm},\pi^{0},\gamma} E_{\text{total}}^{i}\right)$ Miss neutrons

- Even with perfect reco, complex $q_0 \leftrightarrow E_{had}$ relationship
- Cannot infer q₀ without assuming a model!

$$E_{\text{had}}^{\text{true}} = \left(\sum_{i=n,p} E_{\text{kin}}^{i}\right) + \left(\sum_{i=\pi^{\pm},\pi^{0},\gamma} E_{\text{total}}^{i}\right)$$

- Most detectors cannot recover energy lost to neutrons
- Significantly increases the smearing between q₀ ↔ E_{had}

$$E_{\text{had}}^{\text{reco}} = \left(\sum_{i=p} E_{\text{kin}}^{i}\right) + \left(\sum_{i=\pi^{\pm},\pi^{0},\gamma} E_{\text{total}}^{i}\right)$$

Situation worsens considerably if pion misreconstruction is included: EPJC 82 (2022) 9, 808

- Most detectors cannot recover energy lost to neutrons
- Significantly increases the smearing between q₀ ↔ E_{had}

$$E_{\text{had}}^{\text{reco}} = \left(\sum_{i=p} E_{\text{kin}}^{i}\right) + \left(\sum_{i=\pi^{\pm},\pi^{0},\gamma} E_{\text{total}}^{i}\right)$$

Situation worsens considerably if pion misreconstruction is included: EPJC 82 (2022) 9, 808

Few-GeV accelerator neutrino conclusions

The method works if:

1) There is a low- q_{θ} region with a constant cross section in E_{\forall}

$(\sqrt{99}) _{0.8}^{0.8} = 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.2 \\ 0.5 \\ 1 \\ 1.5 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.6 \\ 0.6 \\ 0.4 \\ 0.6 \\ 0.4 \\ 0.6$

2) It can be selected without significant model dependence

3) It provides a useful number of events

Part II: TeV energies (the best of methods)

PRD 109 (2024) 3, 033010 arXiv:2310.06520 [hep-ph]

The Forward Physics Facility (FPF)

- Planned far-forward search experiment to be located 617 m from the ATLAS collision point in HL-LHC era
- Rich physics program exploiting a previously unsampled (very low-x interactions) regime $x = \frac{Q^2}{1 + 1}$

FPF neutrino physics

- First neutrino cross sections in $0.3 \le E_v \le 10$ TeV, for all flavors
- A probe of far-forward hadron production, related to various QCD questions, and a host of BSM scenarios
- No other data available for hadron production in this regime

Event rate Neutrino flux $R(\vec{\mathbf{x}}) = \int dE \ \Phi(E_{\nu}) \times \sigma(E_{\nu}, \vec{\mathbf{x}}) \times \epsilon(\vec{\mathbf{x}}) \times P(E_{\nu}; L)$ Cross section Detector smearing Generic propagation effect

Low-v method requirements

The method works if:

- 1) There is a low-q₀ region with a constant cross section in E_{ν}
- 2) It can be selected without significant model dependence
- 3) It provides a useful number of events

Is the low-q₀ cross section flat in E_{ν} ?

 \mathbf{v}_{μ} : relatively constant with E_{ν} for $q_0 \le 20$ GeV $\overline{\mathbf{v}}_{\mu}$: within a few-% $q_0 \le 10$ GeV

Is the low-q₀ cross section flat in E_{ν} ?

$$+ \frac{q_0^2}{2E_\nu^2} \left[\frac{F_2}{1+R_{\rm L}} \pm xF_3 \right] \right) \mathrm{d}x$$

Is the low-q₀ cross section flat in E_{ν} ?

Define low-v region as:

- ν_{μ} CC [5 \leq] $q_0 \leq$ 20 GeV
- $\overline{\nu}_{\mu}$ CC [5 ≤] $q_0 \le 10$ GeV

Is the low-q₀ cross section flat in E_{ν} ?

- LE: low energy tuned model (accelerator community)
- HE: high energy tuned model (telescope community)
- Few-% non-linearity for v_{μ} , LE/HE similar
- ~10% non-linearity for $\overline{\nu}_{\mu}$, larger LE/HE differences

- Smearing assumptions idealized, but follow FPF design docs
- *E*_{had} cuts introduce a high-q₀ tail
- E_{ν} dependent to some extent
- More pronounced for $\bar{\nu}_{\mu}$ (~10%) than ν_{μ} (~1%)

- Low- E_{had} sample cross sections \approx linear with E_{ν}
- Slightly less flat for both v_{μ} and \overline{v}_{μ} than low-q₀ case
- Larger LE/HE differences: few-% for v_{μ} , $\approx 10\%$ for $\overline{v_{\mu}}$

Low-v sample event rate

- For 3000 fb⁻¹ FPF exposure, FASERv2 low-v gives $O(10,000) v_{\mu}$ and $O(1,000) v_{\mu}$ events
- Relationship between reco. and true E_{ν} is fairly diagonal (dominated by E_{μ}) $E_{\nu}^{\text{reco}} = E_{\mu} + E_{\text{had}}^{\text{reco}}$

FASERv2 v_{μ} flux constraint

TeV neutrino conclusions

The method works if:

1) There is a low-q₀ region with a constant cross section in E_{v}

Backup

History of the low-v method

- Widely known/used in accelerator neutrino community:
 - **CCFR**, $30 \le E_v \le 360$ GeV, 1985–1988*
 - **NuTeV**, $30 \le E_v \le 360$ GeV, 1996–1997*
 - **NOMAD**, $3 \le E_v \le 100$ GeV, 1995–1998*
 - MINOS(+), 2 ≤ E_v ≤ 10 GeV, 2005–2016*
 - **MINERvA**, $2 \le E_v \le 10$ GeV, 2009–2019*
- Discussed for use in current/future precision experiments:
 - **MicroBooNE**, $0.3 \le E_{\nu} \le 2$ GeV, 2015–2021*
 - **DUNE**, $1 \le E_v \le 5$ GeV, 2030's

*all dates indicate data-taking periods

History of the low-v method

- Widely known/used in accelerator neutrino community:
 - **CCFR**, $30 \le E_v \le 360$ GeV, 1985–1988*
 - **NuTeV**, $30 \le E_v \le 360$ GeV, 1996–1997*
 - **NOMAD**, $3 \le E_v \le 100$ GeV, 1995–1998*

*all dates indicate data-taking periods

- **MINOS(+)**, $2 \le E_v \le 10$ GeV, 2005–2016*
- **MINERvA**, $2 \le E_v \le 10$ GeV, 2009–2019*
- Discussed for use in current/future precision experiments:
 - **MicroBooNE**, $0.3 \le E_v \le 2$ GeV, 2015–2021*
 - **DUNE**, $1 \le E_v \le 5$ GeV, 2030's

Few-GeV cross sections are not well understood

- Large a priori uncertainties
- Broad E_{ν} range in beam
- Multiple interaction processes
 → not just DIS!
- Measureable states convolved by nuclear effects

Few-GeV cross-section models

A variety of model predictions are on the market – use a variety to investigate potential for bias:

- **GENIEv2** used in many published results
- **GENIEv3 10a** and **GENIEv3 10b** currently used by many active experiments (10a vs 10b have different FSI models)
- **SUSAv2** and **CRPA**: state-of-the-art nuclear response modeling for pionless events (implemented in GENIE ~v3.2.0)
- NEUT: used by T2K
- NuWro: performs well w.r.t. world cross-section data
- GiBUU: sophisticated hadron-transport, different neutrino-nucleon model, also performs well in world data comparisons

FPF detectors

- FASER2: low-density magnetized tracker
- FASERv2: 20 t tungsten and nuclear emulsion
- FLArE: 10/100 t liquid argon TPC

High-energy cross-section modeling

Low energy (LE): EPJST 230 (2021) 24, arXiv:2106.09381

- Developed for few-GeV accelerator neutrino community
- DIS from Bodek-Yang model \rightarrow tuned for low-Q²
- LO structure functions, use GRV98LO PDFs
- Contributions from heavy quarks not included

High energy (HE): JCAP 09 025 (2020), arXiv:2004.04756

- Developed for UHE, high-Q² regime (neutrino telescopes)
- Use new NLO PDFs \rightarrow NLO structure functions
- Include heavy quark contributions
- Non-DIS interactions are neglected

- Low- E_{had} sample cross sections ~linear with E_{ν}
- Slightly less linear for both v_{μ} and \overline{v}_{μ} than low-q₀ case
- Larger LE/HE differences: few-% for v_{μ} , $\approx 10\%$ for $\overline{v_{\mu}}$

FPF event rate

- Neutrino flux predictions* for three FPF detector options Later I'll only show FASERv2 (but all are in the paper)
- Shown for planned 3000 fb⁻¹ HL-LHC run
- Cross section \approx linear with E_{ν}

*PRD104, 113008 (2021)

Detector smearing

	$FASER\nu 2$
Fiducial mass	20 t
Det. cross-section	$0.5{ imes}0.5$ m
Target material	^{184}W
Muon resolution	5%
Charged had. res.	50%
Charged had. threshold	$p \ge 300 \text{ MeV}$
EM shower res.	50%
Minimum track cut	5
Invisible particles	$n,ar{n},K_{ m L}^0, u_X$

$$E_{\text{had}}^{\text{reco}} = \left(\sum_{i=p,\bar{p}} E_{\text{kin}}^{i}\right) + \left(\sum_{i=\pi^{\pm},K^{\pm},\gamma,l^{\pm},K_{\text{S}}^{0}} E_{\text{total}}^{i}\right)$$

- Assumptions follow FPF design docs
- $E_{had} \approx q_0$ for central population
- Low E_{had} tail from unobserved particles

What about v_{μ} ? $\overline{\nu}_{\mu}$ CC(5 \leq $E_{had} \leq$ 10 GeV) $v_{\mu}CC(5 \le E_{had} \le 20 \text{ GeV})$ 0.8 0.5 **Relative flux normalization Relative flux normalization** 0.4 0.6 0.3 0.4 0.2 - Fitted flux + Fitted flux 0.2 0 Model corr. Model corr. True flux True flux 10^{-1} 10^{-1} $E_{v} (TeV)^{10}$ 10 E_v (TeV)

- Much larger model correction uncertainty ≈stat. uncertainty
- Potentially still useful as a cross-check given the huge differences between competing FPF flux predictions
- Possible for a more advanced analysis to attempt to constrain E_{ν} -dependence with data

FPF ν_{μ} flux constraint

- The fitted flux shape has a 10-20% bin-to-bin uncertainties (although bins are correlated)
- The fitted flux is corrected for E_{ν} -dependence, the model correction uncertainty shows the full LE/HE difference

FPF v_{μ} flux constraint

- The fitted flux shape has a 10-20% bin-to-bin uncertainties (although bins are strongly correlated)
- The fitted flux is corrected for E_{ν} -dependence, the model correction uncertainty shows the full LE/HE difference

Hadron production model selection

- True flux uses SIBYLL v2.3d for both light and charmed hadron production
- Black (gray) lines use EPOSLHC (DPMJET-III) for light (charmed) hadron production

All fluxes from: PRD104, 113008 (2021) SIBYLL v2.3d: PRD102, 063002 (2020) EPOSLHC: PRC92, 034906 (2015) DPMJET-III: arXiv:hep-ph/0012252

Neutrino-electron elastic scattering

- The known, but small, cross section can be used to constrain the flux. ~5000 LAr ND events/year
- A powerful additional tool for achieving DUNE's sensitivities, and resolving flux ↔ cross section ambiguities

$$E_{\nu} = \frac{E_e}{1 - \frac{E_e(1 - \cos\theta)}{m}}$$

- Strong normalization contraint due to known XSEC
- Weak shape constraint due to detector smearing and beam divergence

Example: CCFR analysis

Seligman. PhD thesis,

א. ס.

- CCFR use low- ν for $30 \le E_{\nu} \le 360 \text{ GeV}$
- E_{HAD} is their q_0 proxy, and their low- ν sample is $E_{HAD} \le 20 \text{ GeV}$
- To estimate the q_0/E_v correction, they exclude $E_{HAD} \le 4$ GeV because resonant events don't have the correct scaling