

Alice Campani on behalf of the CUORE collaboration

The importance of 0 uetaeta for particle physics and cosmology

- Beyond Standard Model counterpart of double beta decay $(2\nu\beta\beta)$, a rare second order nuclear process observed in **even-even nuclei** for which single beta decay is energetically forbidden
- It violates lepton number conservation ($\Delta L=2$): lepton number asymmetry could explain the matter-antimatter asymmetry in the Universe
- Any observation would provide information on the neutrino mass scale and ordering
- Assuming the exchange of a light Majorana neutrino (simplest scenario) the 0
 uetaeta decay rate is

CUORE & the search for $0\nu\beta\beta$: the experiment in a nutshell

Cryogenic Underground Observatory for Rare Events

• Scientific goal: search for $0\nu\beta\beta$ decay of ¹³⁰Te (isotopic fraction ~34%, Q_{BB}~2528 keV, only ²⁰⁸Tl γ line @ 2615 keV above)

Tonne-scale detector: 988 (nat)TeO₂ crystals arranged in 19 towers and operated at ~10 mK TeO₂ mass is 742 kg (206 kg of ¹³⁰Te)

Scalability of the technique

Underground at the LNGS (Abruzzo, Italy)

Effective FWHM at $Q_{\beta\beta} = (7.320 \pm 0.024) \, \text{keV}$ Background index in the ROI: I.42(2)·I0-2 counts/keV/kg/yr

The CUORE experiment challenge:

- Cryogen free dilution cryostat:
- Mass <4 K (~50 mK): 15 (3 tons)
- Operating stably (>5 yr) <20 mK

Low temperature

Low radioactivity

LNGS natural shielding

External shields: from γs and neutrons

Internal shields: Top: 30-cm modern lead Side and bottom: 6-cm ancient roman Pb from a shipwreck $(^{210}Po < 4 \text{ mBq/kg})$

External structure to decouple detector and the cryostat

Active noise cancellation system

Cryogenics 93, 55-56 (2018)

Denoising of the continuous data using ancillary diagnostic devices

Eur. Phys. J. C 84, 243 (2024)

Low vibrations and noise

Cryogenic calorimeters for rare decays search

The energy released in a particle interaction is measured via thermal excitations (phonons)

The temperature increase is converted into an electric signal by a cryogenic sensor (e.g. a thermistor)

TeO₂ crystal $C \propto T^3 \text{(Debye law)}$ $C \approx \text{nJ/K}$

Ge-NTD thermistor $R \propto e^{\sqrt{T_0/T}}$ $\Delta R \sim 3M\Omega/MeV$

Operating at a temperature of ~ 10 mK: I MeV energy release causes $\Delta T \sim 100$ µK. We use a Si heater to inject stable voltage pulses and do thermal gain stabilization

Data taking with CUORE

- Data split in *datasets*: I-2 months of physics data bookended by calibration
- Typical trigger rate 50 mHz in calibration,
 ~6 mHz during physics runs
- Voltage across NTD Ge thermistors continuously sampled at IkHz, a software trigger is applied offline
- Data taking started in 2017,
 2017-2019: optimization campaigns
- Since march 2019 steady data taking with > 90% uptime in stable temperature conditions: more than 2.7 tonne yr of raw exposure collected so far!
- Average data taking rate of ~50 kg·yr/month

Nature 604, 53-58 (2022)

Detector performance on the 2 tonne yr data

28 datasets (Mayi 2017 - April 2023) for a total TeO₂ (130Te) exposure of 2039.0 (567.0) kg·yr uniformly distributed on the detector

Detector performance on the 2 tonne yr data

- Base cut efficiency 95.624(18) %
- Anti-coincidence cut efficiency 99.80(5) %
- Pulse shape (PSD) cut efficiency 97.9(18) %

- Total analysis cut efficiency 93.4(18) %
- ~914/984 channels surviving cuts per dataset

arxiv:2404.04453

The search for $0\nu\beta\beta$ decay with 2 tonne \cdot yr data

Region of interest (2465, 2575) keV

- flat background
- 60Co sum peak at 2505.7 keV
- posited peak at 2528 keV for the signal

Unbinned Bayesian (and frequentist) fit with $\Gamma_{0\nu\beta\beta}>0$ Systematics treated as nuisance parameters in the fit

No evidence of $0\nu\beta\beta$: new limit on ¹³⁰Te half-life $T_{0\nu\beta\beta}^{1/2}>3.8\cdot 10^{25}~{\rm yr}~(90~\%~{\rm C}~.{\rm I.})$ Frequentist limit $T_{0\nu\beta\beta}^{1/2}>3.7\cdot 10^{25}~{\rm yr}~(90~\%~{\rm C}~.{\rm L.})$

Average background index

$$b = (1.42 \pm 0.02) \cdot 10^{-2} (\text{counts/keV/kg/yr})$$

The search for $0\nu\beta\beta$ decay with 2 tonne \cdot yr data

Median exclusion sensitivity from toy MC experiments $T_{0\nu\beta\beta}^{1/2} = 4.4 \cdot 10^{25} \text{ yr } (90 \% \text{ C.I.})$

The probability to obtain a more stringent limit is 67%

Assuming the exchange of a light Majorana neutrino the limit on the effective Majorana mass is

 $m_{\beta\beta} < 70 - 240 \text{ meV}$

CUORE background model and 130 Te 2 uetaeta decay

- Accurate Geant-4 based background model profiting of the high detector granularity
- ~80 sources simulated, Bayesian fit of the singleand double-calorimeter events with priors obtained from radioassays and past experiments

1038.4 kg·yrTeO₂ exposure <u>arxiv:2405.17937</u>

Precise measurement of 130 Te $2\nu\beta\beta$ decay with the background reconstruction improvements (energy range, binning, systematics treatment)

$$T_{1/2}$$
 (130Te) = $\left[9.321^{+0.055}_{-0.034} \text{ (stat) } ^{+0.069}_{-0.013} \text{ (syst)}\right] \cdot 10^{20} \text{ yr}$

Noise studies

- We recently discovered that CUORE is sensitive to microseismic activity induced by the sea waves
- Storms ↔low frequency noise: strong correlation

 Solutions to improve decoupling are under investigation

<u>arxiv:2405.13602</u>

Continuous data denoising exploiting the correlation between noise power spectra of detector channels and ancillary diagnostic devices (seismometers, accelerometers, antennae and microphones) installed in the experimental hut:

40% raw-RMS reduction

Other searches and analyses with CUORE

¹³⁰Te $\beta\beta$ decay to the 1st 0^+ excited state

120Te $0
u \beta^+ EC$ decay to the ground state

$$T_{1/2}^{0\nu} > 5.9 \times 10^{24} \text{ yr } (90 \% \text{ C. I.})$$

$$T_{1/2}^{2\nu} > 1.3 \times 10^{24} \text{ yr } (90 \% \text{ C. I.})$$

Eur. Phys. J. C, 81 57 (2021)

 $T_{1/2}^{0\nu} > 2.9 \cdot 10^{22} \text{ yr } (90\% \text{ C.I.})$

 128 Te $0
u\beta\beta$ to the ground state

PRL 129, 222501 (2022) Search for fractionally charged particles

arxiv:2406.12380

 $T_{0\nu\beta\beta}^{1/2} > 3.6 \cdot 10^{24} \text{ yr } (90 \% \text{ C.I.})$

Conclusions and future perspectives

- CUORE proved the scalability of the cryogenic calorimeters technique to tonne-scale detectors thereby paving the way to rare decay searches with cryogenic calorimeters
- We exceeded 2 tonne yrTeO₂ analyzed exposure and data collection is proceeding smoothly towards our **goal** (2025) of a final **3 tonne yrTeO₂ exposure** (corresponding to \sim 1 tonne yr 130 Te)
- We found no evidence of $0\nu\beta\beta$ decay with 2039 kg · yr TeO₂ exposure
- Many interesting analyses ongoing on and beyond $\beta\beta$ decay searches: background-related studies (e.g. muon tracks reconstruction), multispectral analyses (search for $0\nu\beta\beta$ decay in double-crystal events) and low energy studies
- · Important feedback for the CUPID project that will come after CUORE, both for the cryogenics and background budget
- After interventions on the cryogenics and before the CUPID (CUORE upgrade) detector installation,
 a CUORE phase II dedicated to low energy studies (dark matter searches, e.g. WIMPs, axions, ...) is planned (2026)

New results soon: stay tuned!

Thank you on behalf of the CUORE collaboration

Back-up slides

Data processing in CUORE

Noise is mitigated correlating vibrations with measurements obtained with auxiliary devices, i.e. microphones, antennae, accelerometers, seismometers

2 Optimum trigger (OT)

Offline retrigger to maximize SNR using power spectra of particle induced and noise waveforms.

3 Optimum Filter technique

4 Thermal gain stabilization (TGS)

Filtered signal amplitude is corrected against T drifts with fixed E pulses

5 Energy calibration

232Th + 60Co external strings 2nd order polynomial fit to extract our calibration coefficients

Event selection for the 0 uetaeta decay search

6 Anti-coincidence (AC) selection

~88% $0\nu\beta\beta$ events release all energy in a single crystal: multi-site events are rejected

8 ROI blinding

Exchange events from 208 TI line at 2615 keV with events at the 130 Te $0\nu\beta\beta$ Q-value

We use Principal Component Analysis (PCA) to reject non-signal like and noisy events

9 Efficiency of selection cuts

II ROI model and blinded fit

10 Detector response evaluation

On a calorimeter-dataset basis using ²⁰⁸TI line at 2615 keV in calibration data

12 Data unblinding and fit

Detector response evaluation

- We extract the detector response on events from the ²⁰⁸TI line at 2615 keV in calibration data separately for each bolometer and dataset
- The signal peak is modeled as a sum of 3
 Gaussians, recent updates to deal with cases
 where a single/double-Gaussian model is sufficient
 to speed up the fitting procedure
- We fit the most prominent γ lines in physics data to scale the energy resolution and calibration bias at $Q_{\beta\beta}$

FWHM (
$$^{208}\text{Tl}$$
) = (7.540 ± 0.024) keV
FWHM ($Q_{\beta\beta}$) = (7.320 ± 0.024) keV
 $\Delta E \left(Q_{\beta\beta}\right) = 0.52^{+0.04}_{-0.30} \text{ keV}$

What's next: from CUORE to CUPID

CUPID: CUORE Upgrade with Particle IDentification

- CUPID to overcome CUORE limitations and continue the $0\nu\beta\beta$ decay search with cryogenic calorimeters solid bases from CUORE, CUPID-0, CUPID-Mo
- Isotope: 130 Te, nat Te (i.a. $\sim 34\%$) \rightarrow 100 Mo, enrichment necessary (95%) $Q_{\beta\beta} \sim 2528 \text{ keV} \rightarrow \sim 3034 \text{ keV}$ (larger phase space, lower bkg) Absorber: $\text{TeO}_2 \rightarrow \text{Li}_2\text{MoO}_4$ Mass: 742 kg (206 kg) TeO_2 (130 Te) \rightarrow 450 kg (240 kg) Li_2MoO_4 (100 Mo) 988 crystals (19 towers) \rightarrow 1596 crystals (57 towers)
- Single channel (heat) readout → double (light & heat) readout for PID
 Top & Bottom Ge light detectors with Neganov-Luke amplification
- Same cryostat with an additional muon veto to achieve a background level of 10^{-4} counts/keV/kg/yr and a factor ~ 5 improvement in the sensitivity