Search for neutrinoless double beta decay with the NEXT experiment Brais Palmeiro on behalf of the NEXT collaboration

42nd International Conference on High Energy Physics July 17-24 2024 Prague Czech Republic

ichep2024.org

Couline.

brais.palmeiro@manchester.ac.uk

MANCHESTER 1824

The University of Manchester

Sensitivity to ßß0v

$S(m_{\beta\beta}) = K_2 \ \epsilon^{-1/2} \sqrt[4]{\frac{c \cdot \Delta E}{M_{\beta\beta}t}} \propto T_{1/2}^{-1/2}$

Search for neutrinoless double beta decay with the NEXT experiment

Sensitivity to ßß0v

Detection efficiency

$$K_{2} = \sqrt{k}K_{1} = \sqrt{k\frac{W_{\beta\beta}}{\log 2 N_{A}}} \frac{m_{e}^{2}}{G^{0\nu} |M^{0\nu}|^{2}}$$
(isotope)

Search for neutrinoless double beta decay with the NEXT experiment

Background rate

Energy window (Resolution)

The Onext collaboration

*Neutrino Experiment with Xenon TPC

- Isotope: ¹³⁶Xe **Detection method**: High Pressure gas Xe TPC Q-value: 2.458 MeV **Advantages:**
 - Best resolution for Xe experiments $(<1\%FWHM@Q_{\beta\beta})$
 - Tracking information (Full tracks)
 - Low background

Principle of operation

Principle of operation

The mext programme

2015

Search for neutrinoless double beta decay with the NEXT experiment

NEXT-100 2024/2027 Scalability

2026

~100kg

Laboratorio

Canfranc

Subterráneo

2023

Background improvement Neutrinoless double beta decay search in ¹³⁶Xe

NEXT-HD

2027? Neutrinoless double beta decay search through inverted neutrino mass ordering

NEXT-BOLD

Barium tagging for background-free experiment inverted neutrino mass ordering

The mext programme

2015

Search for neutrinoless double beta decay with the NEXT experiment

2023

2026

~100kg

Laboratorio

Canfranc

Subterráneo

NEXT-100 2024/2027 Scalability Background improvement Neutrinoless double beta decay search in ¹³⁶Xe

NEXT-HD 2027?

Neutrinoless double beta decay search through inverted neutrino mass ordering

NEXT-BOLD

Barium tagging for background-free experiment inverted neutrino mass ordering

NEXT-White

Operation: 2016-2021

Mass: ~5 kg

Objectives:

- Design and refine the calibration techniques
- Validation of the background model
- Measurement of the 2vββ and half-life limit for 0vββ
- Energy resolution close to the $Q_{\beta\beta}$ -value
- Track characterization and background rejection

530.3 mm of drift length

Brais Palmeiro

<u>JINST 13 (2018) 12</u>

NEXT-White: Energy Calibration

Low energy calibration (^{83m}Kr)

High energy calibration (¹³⁷Cs & ²⁰⁸Tl)

Search for neutrinoless double beta decay with the NEXT experiment

Tracking and signal identification

NEXT-White: ßß studies

JHEP 10 (2019) 051 <u>JHEP 10 (2018) 112</u>

Search for neutrinoless double beta decay with the NEXT experiment

First ever almost background-model independent double beta analysis!

The mext programme

2015

Search for neutrinoless double beta decay with the NEXT experiment

2023

2026

NEXT-100 2024/2027 Scalability Background improvement Neutrinoless double beta decay search in ¹³⁶Xe

Laboratorio Subterráneo Canfranc

NEXT-HD 2027?

Neutrinoless double beta decay search through inverted neutrino mass ordering

NEXT-BOLD

Barium tagging for background-free experiment inverted neutrino mass ordering

NEXT-100

Objectives:

- Demonstrate scalability
- Energy resolution close to the $Q_{\beta\beta}$ -value
- Improve radioactive budget
- Competitive search of the ββ0v
- Test-bench for technology upgrades toward a tonne-scale detector

3584 SiPMs

Mass: ~100 kg (at 15 bar) JHEP 05 (2016) **Sensitivity**: 6.0×10^{25} y after three years **Background**: $< 10^{-3}$ counts/(keV · kg · y)

1300 mm of drift length

NEXT-100

Objectives:

- Demonstrate scalability
- Energy resolution close
- Improve radioactiv
- Competitive search
- Test-bench for techno tonne-scale detector

See poster 189

Search for neutrinoless double beta decay with the NEXT experiment

111

NEXT-100: Assembly

Search for neutrinoless double beta decay with the NEXT experiment

Energy plane

Tracking plane

JINST 19 (2024) 02, P02007

NEXT-100: Comisioning

Ready for operations in May 2024. Currently in commissioning phase, filled with argon and being characterized with ²²²Rn decay chain data.

See poster 189

The mext programme

2015

Search for neutrinoless double beta decay with the NEXT experiment

NEXT-100 2024/2027 Scalability Background improvement Neutrinoless double beta decay search in ¹³⁶Xe

2026

2023

Laboratorio Subterráneo Canfranc

NEXT-HD 2027?

Neutrinoless double beta decay search through inverted neutrino mass ordering

NEXT-BOLD

Barium tagging for background-free experiment inverted neutrino mass ordering

NEXT-HD

- Symmetric design with central cathode
- Xe/He to reduce transverse diffusion
- Barrel instrumented with fiber optics for energy and S1 measurements
- External water tank shielding

Projected for 2027 Mass: ~1000 kg (at 15 bar) **Sensitivity**: 1.2×10^{27} y after 5 years **Background**: $0.01 \text{ counts}/(\text{keV} \cdot \text{ton} \cdot \text{yr})$

Search for neutrinoless double beta decay with the NEXT experiment

NEXT-BOLD

Designed to accommodate Ba tagging

The viability of microscopy systems capable of imaging individual barium ions in high-pressure xenon gas is demonstrated

See poster 249

Search for neutrinoless double beta decay with the NEXT experiment

NEXT in Short

 All the results from NEXT-White demonstrate the performance of the detector technology and sufficiently low background levels for the program

 NEXT100 is running and in commissioning and will be able to provide a competitive measurement of the BBOv half-life

 The success of the program is being transferred to the design of the upcoming tonne scale

Barium tagging is knocking at the door!

Thanks!

Search for neutrinoless double beta decay with the NEXT experiment

DAR

Search for neutrinoless double beta decay with the NEXT experiment

Expected background rate: 4×10⁻⁴counts/(keV·kg·y) Expected background: 1 event per year in ROI

Expected sensitivity: $6 \cdot 10^{25}$ yr after 3 years

Brais Palmeiro

NEXT-DBDM

Search for neutrinoless double beta decay with the NEXT experiment

Location: LBNL (USA) **Operation:** 2009-2014 Mass: ~1 kg high-pressure gas with an EL scheme

NEXT-DEMO

Location: IFIC (Spain)

Operation: 2009-2014

Mass: ~1.5 kg

Resolution: 0.74%FWHM @ $Q_{\beta\beta}$ (best)

```
Objective: proof-of-concept of the SOFT
proposal
```


Search for neutrinoless double beta decay with the NEXT experiment

NEXT-DEMO

Location: IFIC (Spain)

Operation: 2009-2014

Mass: ~1.5 kg

Resolution: 0.74%FWHM @ $Q_{\beta\beta}$ (best)

```
Objective: proof-of-concept of the SOFT
proposal
```


measured. It is shown to be negligible for **NEXT-100**

Search for neutrinoless double beta decay with the NEXT experiment

Background model has been validated!

