supernemo

Status of the SuperNEMO Demonstrator and Analysis of First Data

Xalbat Aguerre

THE UNIVERSITY of EDINBURGH

~100 collaborators over 8 countries

WARWICK

Collaboration meeting in Marseille in February

Collaboration meeting in Edinburgh last July

Xalbat Aguerre

Unique tracker/calorimeter approach

- **1.** ββ source foil: free choice of solid isotopes
- 2. Tracker: charged particles' trajectory
- 3. Calorimeter : particle's individual energy and time of flight

Unique tracker/calorimeter approach

- **1.** ββ source foil: free choice of solid isotopes
- 2. Tracker: charged particles' trajectory
- 3. Calorimeter : particle's individual energy and time of flight

Full topology of the decay

New Physics with SuperNEMO

 $Ov\beta\beta$ mechanism discrimination

Mechanisms distinguishable by:

- e⁻ individual energy
- e⁻ angular distribution

SuperNEMO is the only experiment able to study these mechanisms!

R. Arnold et al. "Probing New Physics Models of Neutrinoless Double Beta Decay with SuperNEMO" [Eur. Phys. J. C70:927-943, 2010]

New Physics with SuperNEMO

collaboration

Standard and exotic 2vββ

Improved description of $2\nu\beta\beta$ spectrum shape > Precise shape analysis can constrain $g_A^{[1]}$ > Shape parameters: ξ_{31}, ξ_{51}

Where to look:

Single-electron energy spectrum

Decay with right-handed neutrino $\nu_R \nu_L \beta \beta$ \rightarrow Constrains on the RH neutrino interactions $(V + A)^{[2]}$ Where to look:

> Angular distribution

Decay with sterile neutrino $\rightarrow N \nu \beta \beta$

> Shape depends on $m_N^{\left[3
ight]}$

Where to look:

Single-electron energy and Summed energy spectra

Summed 2-electron energy spectra

New Physics with SuperNEMO

NEMO-3 : 3σ preference for SSD decays in ⁸²Se

SuperNEMO : 5σ SSD/HSD sensitivity in < 2.5 years

Eur. Phys. J. C (2018) 78: 821

Quenching of g_A

SuperNEMO's individual e^- spectrum is more sensitive to g_A

Phys Rev Lett 122, 192501 (2019)

Xalbat Aguerre

ICHEP 2024

SuperNEMO demonstrator

Demonstrator construction is currently being finalised

Demonstrator **objectives**:

- Proof of **feasibility** of a large-scale detector.
- Precision measurement of the **2vββ decay kinematics**
- Background-free experiment in the ROI for $0\nu\beta\beta$

⁸²Se source foils

34 ⁸²Se foils, i.e 6.11 kg (90-99% enriched) High $Q_{\beta\beta}$ = 2.998 MeV High $T_{1/2}^{2v}$ = 9.4 10¹⁹ years Article being finalised

7

Xalbat Aguerre

ICHEP 2024

Tracker

cell diameter : 44 mm cathodic ring

2034 cells (14970 wires) in Geiger mode (99% working) Helium based ionisable gas mixture **3D** track reconstruction

- t_{anodic} (0-10 µs) → radial distance (X,Y) $t_{cathodic}$ (0-80 µs) → longitudinal distance (Z)

Tracker

cell diameter : 44 mm cathodic ring

2034 cells (14970 wires) in Geiger mode (99% working) Helium based ionisable gas mixture **3D** track reconstruction

- t_{anodic} (0-10 µs) → radial distance (X,Y) t_{cathodic} (0-80 µs) → longitudinal distance (Z)

Real data 3D track reconstruction

One of the calorimeter walls prior to the detector's closure

712 Optical Modules (scintillator + photomultiplier)

8" optical module

Time resolution < 400 ps for e^{-} at 1 MeV

Article in preparation

Particle identification

- γ : **no track**, only calo hit
- α : **short track**, no calo hit
- e⁻ : track and calo hit

Particle identification

- γ: no track, only calo hit
- α : **short track**, no calo hit
- e⁻: track and calo hit

Crossing electron distinguishable by time of flight

Xalbat Aguerre

ICHEP 2024

Particle identification

- γ : **no track**, only calo hit
- α : **short track**, no calo hit
- e⁻ : track and calo hit

Golden $\beta\beta$ event

Xalbat Aguerre

Particle identification

Magnetic field can identify pair production background

- γ: no track, only calo hit
- α : **short track**, no calo hit

e⁻ and e⁺ : **track and calo hit,** distinction by magnetic field

Golden $\beta\beta$ event

Modane Underground Laboratory (LSM)

ICHEP 2024

SuperNEMO goal: <150 µBq⋅m⁻³

SuperNEMO goal: <150 µBq·m⁻³

First Radon measurement : 10-15 mBq \cdot m⁻³

(without any anti-Rn technique)

SuperNEMO goal: <150 µBq·m⁻³

First Radon measurement : 10-15 mBq·m⁻³

(without any anti-Rn technique)

<u>J-Trap 2</u> -80 C° 6 x 500 cm3 charcoal ⇒ Radon capture → Need very pure gaz

- → Tracker gas cleaning (J-trap)
 - Rn capture by charcoal

 $\begin{array}{l} J-Trap 1\\ -50 \text{ C}^{\circ}\\ 2 \text{ x 500 cm3 charcoal}\\ \Rightarrow \text{ pre-cooling the gas}\\ \Rightarrow \text{ Carture traces of vapours} \end{array}$

Poster #632

First Radon measurement : $10-15 \text{ mBq} \cdot \text{m}^{-3}$

(without any anti-Rn technique)

Ethanol removing cartridge

Poster 635

- → Tracker gas cleaning (J-trap)
- → Gas flux control: He recycling
 - Bigger flux for less Rn
 - He purification and reinsertion
 - Installation ongoing

SuperNEMO goal: <150 µBq·m⁻³

First Radon measurement : 10-15 mBq·m⁻³

(without any anti-Rn technique)

→ Tracker gas cleaning (J-trap)

Poster × 632

- → Gas flux control: He recycling
- → Anti-Rn tent
 - Plastic panels on metal frame
 - Filled with radon-reduced air
 - Already installed

Gamma shielding for ambient background

Gammas naturally generated by lab's rock wall

Ambient y background measurement

Gamma shielding for ambient background

18 cm width iron shielding (320 tonnes of iron) Installation ongoing

Neutron shielding

Neutron capture can produce gamma radiation, especially on iron

Neutron shielding

• 243 50 cm-thick water-filled polyethylene tanks

Timeline

Xalbat Aguerre

Xalbat Aguerre

ICHEP 2024

Conclusion

SuperNEMO is a unique $0\nu\beta\beta$ tracker/calorimeter experiment:

- → Full kinematics of the decay
- → Study of new physics only possible for SuperNEMO

Demonstrator currently being finalised:

- → Source foils, calorimeter and tracker ready
- → Gamma and neutron shielding and anti-radon system currently being installed
- → Analysis tools in preparation
- → Background analysis ongoing