

MicroBooNE cross section results from muon neutrinos with pions in the final state and rare processes

Michael Kirby (BNL) on behalf of the MicroBooNE Collaboration 42nd ICHEP 2024 - Prague, CZ July 18, 2024

Neutrino Interaction Model Investigations at MicroBooNE

largest neutrino-argon dataset allows MicroBooNE to target specific aspects of neutrino interaction models

previous talks focused on ν_e -Ar and ν_μ -Ar inclusive and

 ν_{μ} -Ar pion-less measurements

Measurement of ν -Ar π topologies

- key background to ν_e appearance
- probes RES production

First measurements of rare production

- key component to exotic searches and future sensitivity studies

Neutrino Interaction Model Investigations at MicroBooNE

largest neutrino-argon dataset allows MicroBooNE to target specific aspects of neutrino interaction models

previous talks focused on ν_e -Ar and ν_μ -Ar inclusive and

 ν_{μ} -Ar pion-less measurements

Measurement of ν -Ar π topologies

- key background to ν_e appearance
- probes RES production

First measurements of rare production

- key component to exotic searches and future sensitivity studies

π^0 Production Measurements

- significant role in ν_e appearance searches
- π^0 is dominant background in single photon and e^+e^- BSM searches
- Analyses that probe both neutral and charge current production

CC π^0 **Event Selection**

•
$$\nu_{\mu}$$
 +Ar \rightarrow μ + π^{0} + 0 π^{\pm} + X

- reconstructed muon candidate (track, µ-like PID)
- two shower candidates
- reject charged pions
- no requirement on nucleons

CC π^0 **Event Yield**

- Wiener-SVD unfolding technique to extract cross section
 - simulation GENIE v3 MicroBooNE Tune using T2K data

• $\pi^0 \& \mu$ mom and angle, opening angle between $\pi^0 - \mu$

Differential Cross Section CC π^0

- production dominated by $\Delta(1232)$ resonance
- mis-modeling at low π^0 momentum region
- challenges from modeling low momentum transfer interactions, consistent with observations on other targets

Differential Cross Section CC π^0

- production dominated by $\Delta(1232)$ resonance
- mis-modeling at low π^0 momentum region
- challenges from modeling low momentum transfer interactions, consistent with observations on other targets

NC π^0 **Event Selection**

- WireCell* 3D pattern reconstruction followed by SparseConvNet** Selection
- π^0 reconstructed from leading two photon candidates
- candidate events separated into 0p and Np topologies
 - protons reconstructed with threshold of 35 MeV KE
 - *J. Instrum. 17 (01), P01037.

**<u>10.1109/CVPR.2018.00961</u>

NC π^0 **Differential Cross Section**

- cross section extracted using Wiener-SVD method
- separate single-differential measurements for 0p and Np samples
- clear over prediction without effects of FSI

10

NC π^0 **Differential Cross Section**

- first double-differential cross section measurement in π^0 kinematics
- additional sensitivity to regions of phase space
- demonstrates sensitivity to form factor modeling
- have additional data available for analysis in both CC and NC measurements

arXiv:2404.10948

Rare Production Measurements

- provide unique opportunities as test of reconstruction and identification
- validation of models of rare processes that are backgrounds for searchs

η Event Selection

- Neutrino candidate event based on TPC and photon detector signals
- require two photon showers
- reject events with π^0 (250 MeV/c² < $m_{\gamma\gamma}$ < 750 MeV/c²)

η **Production**

- provides novel tool for calibration of GeV scale EM showers
- probes resonate production of higher mass states
 - $\Delta(1232)$ vs $\eta(1535)$
- opens the door to proton decay channels $(p \rightarrow e^+\eta \& p \rightarrow \mu^+\eta)$

Phys. Rev. Lett. 132, 151801

Λ production

- important input to hyperon interaction modeling and propagation in nuclear matter
- extremely rare process due to Cabibbo Suppression
- Event selection presented
 at ICHEP 2022

Phys. Rev. Lett. 130, 231802 (2023)

Brookhaven[•] National Laboratory First measurement with a LArTPC detector

•
$$\sigma = 2.0^{+2.2}_{-1.7} \times 10^{-40} cm^2 / Ar$$

- Event distribution matches well with Λ expectation
- probes momentum resolution of protons and charged pions

Neutron Identification in Neutrino Interactions

- very challenging reconstruction task since TPC designed around charged particle identification
- take advantage of secondary interactions generating protons
- mitigate uncertainty in energy reconstruction from "missing energy"

Neutron Identification in Neutrino Interactions

- very challenging reconstruction task since TPC designed around charged particle identification
- take advantage of secondary interactions generating protons
- mitigate uncertainty in energy reconstruction from "missing energy"

Summary

- MicroBooNE has an extensive program of cross section and rare process analyses
- more than 25 publications so far with sensitivity to many model parameters and choices
- look forward to extending measurements in both statistics and dimensionality

backup

CC π^0 production GENIE v3 after signal selection - MicroBooNE Simulation

CC π^0 kinematics

Generator	p_{π^0}	$\cos(heta_{\pi^0})$	p_{μ}	$\cos(\theta_{\mu})$	$\cos(heta_{\mu\pi^0})$
GENIE v3(tuned)	0.054	0.859	0.0063	0.246	0.922
NuWro	0.0079	0.748	0.0007	0.701	0.908
NEUT	0.059	0.788	0.0012	0.360	0.950
GENIE v2	0.0002	0.964	0.0046	0.218	0.874
GiBUU	0.008	0.465	0.0003	0.126	0.486

TABLE I. P-values comparing unfolded data and generator predictions given in Fig. 2.

NC π^0 cross sections

di-photon invariant mass in η sample

- σ = 3.22 ± 0.84 (stat.) ± 0.86 (syst.) x 10⁻⁴¹cm²/nucleon
- 6.79 x 10²⁰ POT -> 11.1 x 10²⁰ POT

FIG. 2. Distribution of $M_{\gamma\gamma}$ for selected η candidates showing data (data points with statistical uncertainties denoted by the error bar) and the predicted event rate (stacked histogram). Different colors denote different topologies, as described in the legend. The gray error band denotes the systematic uncertainty on the predicted event rate.

Λ cross section posterior

Neutron identification via inelastic proton production efficiency

FIG. 10: (a) Neutron detection efficiency as a function of true neutron kinetic energy. (b) Secondary proton detection efficiency. (c) Neutron detection efficiency as a function of true neutron energy for neutrons that produce protons with kinetic energy 50 MeV or more. (d) Neutron detection efficiency as a function of neutron polar scattering angle for neutrons that produce protons with kinetic energy 50 MeV or more.

arXiv:2406.10583