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Main Message

Ultralight DM can be created for minuscular couplings  
and still produce observable GW 

NANOGrav GW can be from Melting Domain Walls of DM 
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Direct Phase Transition

Early universe spontaneously Broken Phase

μ > M

+χmin−χmin

Domain Walls!
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Veff ≃
λ ⋅ (χ2 − η2)2
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Tension/energy per unit surface     σwall =
2 2λ

3
η3(T )

In the scaling regime (Kibble 1976): one domain wall per Hubble volume: 
  

 Mwall ∼ σwall /H2

ρwall ∼ MwallH3 ∼ σwall H ∝ T5

Melting 
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Walls

Usual Constant 
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Scaling Parameter (constant tension DW)
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Ωgw (IR) ∼ f 2 Ωgw (UV ) ∼ f −1 Cutoff  ℓ = (λ /2)−1/2 η−1
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Ωgw (IR) ∼ f3Usual  Domain Walls



 More on    in IRf2
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ΩGW( f ) = Ωyr ( f
fyr )

5−γ

,

NANOGgrav

The 100-meter Green Bank Telescope, the world's largest fully steerable telescope and a core instrument 
for  pulsar timing array experiment. 
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Inverse Phase Transition At Meltdown

Tachyonic mass    
slowly decreases / 

redshifts  
due to cosmological 

expansion

μ(t)

Early Universe 
spontaneously Broken Phase with VEV slowly moving
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Late Universe 
 DW melt down and disappear  

then oscillations around restored symmetric vacuum
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Allowed Parameter Space
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A bridge between  
NANOGrav and LIGO!
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DM from the inverse phase transition

MBH ≃ 102M⊙Superradiance for LIGO

Thanks a lot for attention! 
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