

Cryogenic Target Detectors

Gram-scale cryogenic calorimeters equipped with thin-film tungsten transition-edge sensors as highly sensitive thermometers. Optimized to measure energies under a few keV.

Energy

Timé

Temperature

Deposition

Transition-Edge Sensor (TES): superconductive film operated on the onset of

Two 3x3 matrices of target detectors. Multi-target approach: - Al₂O₃: for background

Cryogenic System

"Dry" Dilution refrigerator to avoid handling of cryogenic liquids. The base temperature reached is below 7mK.

Model: BlueFors LD400 cryogen-free dilution refrigerator Cooling Power: >500 µW at 100mK

- Custom Vibration decoupling system deployed and in use (patent protected)
- Installation of read-out electronics under commissioning

○ Installation of calibration electronics under Internal stages of the NUCLEUS cryostat commissioning

Cryogenic system deployed at TUM's (Munich, Germany) shallow underground laboratory

Active Vetos and Shielding

Inner Veto:

- Instrumented holder for target detectors:

Resist

Work

Point

- Sub-keV cryogenic detector with TES readout
- - Mechanical stress events
 - Surface contamination

Muon Veto (MV) :

- 5 cm thick plastic
- scintillator plates
- SiPMs & WLS-fiber readout
- 4π coverage with cryogenic muon veto
- Threshold ~ 5 MeV

External Shielding:

Lead

Borated

Veto

- Reduction of external x - 4 kg of 2.5 cm
- thickness in 6 HPGe crystals (4π coverage) Threshold <10 keV

Inner Shielding: - Lead, Copper, PE, B_4C - Shielding against neutrons

gammas

Energy E (eV)

Sensitivity and Simulations

Preliminary

days]

<u>ල</u>10⁷

>0 10⁵

s10³

Source	Flux [s ⁻¹ cm ⁻²]	Rate [counts/kg/day]		
		10-100 eV	0.1-1 keV	1-10 keV
Ambient γ s	3.937	< 1.2	3.2±1.3	51.4±8.4
Atmospheric muons	0.019/1.4	< 7.9	<3.6	10.5 ± 3.5
Atmospheric neutrons	0.0134/5.0	20.9±0.6	39.4±0.9	116.1 ± 1.5
Material Contaminatio	(sum)	0.91 ± 0.18	11.47±0.65	133.8±2.21
Sum		25.8±2.2	55.4±2.1	311.8±9.4

Low Energy EXCESS Spectra

EDELWEISS RED20-MINER Sapphire

-SuperCDMS CPD -BULLKID surface

and a second sec

-NUCLEUS 1g prot. -CRESST-III DetA

Known Backgrounds:

- Expected CEvNS rate:
 - ~30 counts/kg/day in the 10eV-1keV recoil energy range
- Targeted Signal/Background \geq 1
- With 100 dru flat background and full setup:
 - 5σ significance in few weeks of live-time
 - 10% uncertainty on CEvNS

Unknown Background "Low energy EXCESS":

- Unexplained exponential rise of counting rate at low energies (similar to reactor CEvNS)
- With "EXCESS" competitive limits can be set on new physics models (light mediators or neutrino EM

Lead and Polyethylene

Exp1 + Exp2 + Gauss

CRAB

 $\neg \Box \Box \Box$ 1.2 0.2 0.6 0.8 0 0.4 Total Energy Deposition [keV]

properties)

First combined operation of vetos with target detectors - Muon Veto + One COV crystal + One Al₂O₃+TES crystal cube - For ~40h of data expected 3-fold coincidences in low background environment (~15 m.w.e):

• few direct muons and accidentals (very few in CEvNS's R.O.I)

de-excitation with high energy γ emission and nuclear recoil.

- Nuclear recoil on CaWO₄ expected at 112 eV
- Seen with 3σ significance using ⁵⁵Fe calibration

NUCLEUS status and future developments:

- Experimental setup being deployed at TUM (Munich, Germany) in shallow underground laboratory for final testing and background validation

- 2025: setup deployment at Chooz

Marco Giammei - Ph.D. Candidate - Università di Roma "Tor Vergata" - marco.giammei@roma2.infn.it

Contacts,

References,

and Poster

Download