

The Pierre Auger Observatory: Latest results and prospects for the future

*FZU — Institute of Physics of the Czech Academy of Sciences The Pierre Auger Collaboration, Av. San Martín Norte 304, 5613 Malargüe, Argentina

42nd ICHEP, Prague, 20/07/2024

Pierre Auger Collaboration

Pierre Auger Observatory

24 + 3 fluorescence telescopes

Surface detector (SD) duty cycle 100 %

1660 water-Cherenkov detectors

grid	area	full efficiency $lg(E/eV)$
1500 m	3000 km ²	18.5
750 m	23.5 km ²	17.5
433 m	1.9 km ²	16.5

Energy estimation: atmosphere as a calorimeter

Fluorescence detector: direct observation of the longitudinal energy deposit

Energy estimation: atmosphere as a calorimeter

Energy estimation: sample particles reaching ground

Fit to signals in all event stations

Primary energy from S(1000)
Mass estimator: SD signal (sensitive to muons)
Caveat: both are hadronic-model-dependent

Auger Observatory surface detector

Hybrid events: SD energy calibration using FD

✓ SD energy and energy spectrum measurements are mostly data-driven ↑ Mass composition: predictions on X_{max} and [muon] SD signal depend on air-shower simulations

UHECR propagation: principal energy losses

Photonuclear reactions with extragalactic background light & cosmic microwave background

pion production	$p + \gamma \rightarrow \Delta^+ \rightarrow p + \pi^0$ $p + \gamma \rightarrow \Delta^+ \rightarrow n + \pi^+$	horizon $\lesssim 200$ Mpc: anisotropic matter distribution Greisen–Zatsepin–Kuzmin (GZK) cutoff $E_0 > 5 \times 10^{19}$ eV
photodisintegration Gerasimova-Rozental	${}^{A}Z + \gamma \rightarrow {}^{A-1}Z + n$ cutoff (1961)	Energy cutoff is similar to GZK for protons Secondary nucleon energies $\sim E_0/A$, below GZK cutoff Suppressed UHE photon and neutrino fluxes
pair production	$p + \gamma ightarrow p + e^+ + e^-$	important above 2×10^{18} eV

All-particle energy spectrum

PRL 125 (2020) 121106, PRD 102 (2020) 062005, Eur. Phys. J. C 81 (2021) 966

Alexey Yushkov

Highlights from the Pierre Auger Observatory

Mass composition: mean and standard deviation of X_{max}

Break in $\langle X_{max} \rangle$, $\sigma(X_{max})$ at 2 EeV (10^{18.3} eV): trend towards heavier and less mixed composition

Alexey Yushkov

Highlights from the Pierre Auger Observatory

Fractions of primary nuclei from fits of the FD X_{max} distributions

Highlights from the Pierre Auger Observatory

PoS(ICRC2023)319, PoS(ICRC2023)365, PoS(ICRC2023)438

Astrophysical model for combined spectrum-composition fit

Example scenario: proton component with $lg(R_{cut}/V) > 19.3$ plus

mixed component: $f_{\text{He}} = 24.5\%$, $f_{\text{N}} = 68\%$, $f_{\text{Fe}} = 5\%$, $f_{\text{Fe}} = 2.5\%$; $\lg(R/V) = 18.19$; hard injection spectrum $\gamma = -1.47$

All-particle energy spectrum: plausible interpretations

 \diamond Galactic-extragalactic transition ($\sim 10^{17}$ eV): vanishing Galactic iron; $E_{\text{max}}(Z) \simeq Z E_{\text{max}}^{\text{proton}}$

- Smooth behavior between 2nd knee and ankle: awaiting explanation
- \diamond Ankle: rigidity-dependent cutoff $\approx 5Z \times 10^{18}$ eV; vanishing protons
- ◊ Instep: interplay between helium and CNO
- \diamond Suppression: combination of maximum energy and nuclei photodisintegration

$/\!\!\Lambda$ Mass composition: predictions on $X_{ m max}$ and SD signal depend on air-shower simulations

All hadronic models fit data best with

 $\diamond~X_{\rm max}$ scales shifted 20 g cm $^{-2}$ to 50 g cm $^{-2}$ deeper

- \diamond Muon scales increased by 15% 25%
- Time to face the consequence ###

Good: more consistent mass composition inferences

Not so good: heavy (~iron) composition beyond 50 EeV

Future is here: X_{max} up to 10^{20} eV with machine learning and SD data

New findings to incorporate in the astrophysical interpretations

- \diamond three $\langle X_{\text{max}} \rangle$ breaks above 'ankle': significance $\approx 3\sigma$ presence of all 3 breaks to be confirmed vet
- \diamond breaks in $\langle X_{max} \rangle$ and spectrum do not need to coincide $\langle X_{max} \rangle$ break at 2 EeV can be associated with 'ankle' at 5 EeV
- proximity of features can be accidental due to their density

More details in talk of Thomas Fitoussi in this session

Summary of photon searches

No unambiguously identified photons

- \diamond Best photon limits for $E>2\times10^{17}~{\rm eV}$
- Earlier super-heavy dark matter models are strongly constrained by Auger limits
- ◊ Significant increase of exposure needed to constrain GZK proton scenarios

Search for photons $E > 10^{19}$ eV from GW events No candidates in coincidence with GW Main problems Horizon of photons is few Mpc Overwhelming hadronic background ApJ 952 (2023) 91

photon searches at Auger: ApJ 789 (2014) 160; JCAP 04 (2017) 009; ApJL 837 (2017) L25; PoS (ICRC2021) 373; ApJ 933 (2022) 125; JCAP 05 (2023) 021, PoS (ICRC 2023) 1488, arXiv:2406.07439

PHYSICAL REVIEW D 107, 042002 (2023)

C PRD 107 (2023) 042002

Cosmological implications of photon-flux upper limits at ultrahigh energies in scenarios of Planckian-interacting massive particles for dark matter

PHYSICAL REVIEW LETTERS 130, 061001 (2023)

C PRL 130 (2023) 061001

Limits to Gauge Coupling in the Dark Sector Set by the Nonobservation of Instanton-Induced Decay of Super-Heavy Dark Matter in the Pierre Auger Observatory Data

PHYSICAL REVIEW D 109, L081101 (2024)

C PRD 109 (2024) L081101

Constraints on metastable superheavy dark matter coupled to sterile neutrinos with the Pierre Auger Observatory

Neutrino searches

No candidates: constraints on proton-dominated astrophysical models and source evolution

neutrino searches at Auger: JCAP 01 (2016) 037, PRD 94 (2016) 122007, ApJ Lett. 850 (2017) L35, JCAP 10 (2019) 022, 11 (2019) 004; ApJ 902 (2020) 105, PoS (ICRC 2023) 1488 Alexev Yushkov Hiehlights from the Pierre Auger Observatory

UHECR correlation (Auger E > 52 EeV) with IceCube and ANTARES neutrinos

No significant correlation observed

UHECR horizon is limited (200 Mpc), unlike for neutrinos

If sources are transient: UHECR in 2 nG EGMF from 50 Mpc distance is delayed by 10⁵ yr

Propagation in GMF can already cause a delay of two decades

For heavy UHECR correlation to their sources is not preserved

Extragalactic origin of UHECRs: dipole for $E \ge 8$ EeV

- ♦ Dipole for $E \ge 8$ EeV: amplitude $d = (7.3^{+1.1}_{-0.9})$ %, at 6.6 σ from isotropy
- \diamond Phase in R.A. $\alpha_d=95^\circ\pm8^\circ$ is nearly opposite to the Galactic center $\alpha_{GC}=-94^\circ$

 \diamond Magnitude and direction of dipole support extragalactic origin of UHECRs with E > 4 EeV

Observation of large-scale anisotropy for $E \ge 8$ EeV

Highlights from the Pierre Auger Observatory

Anisotropies tested against catalogues of astrophysical objects

Starburst galaxies

Significance 4.2 σ , E > 38 EeV

$\gamma \mathsf{AGNs}$

Significance 3.3 σ , E > 39 EeV

starburst galaxies

Starburst galaxies (radio) - expected $\Phi(E_{Auger} > 38 \text{ EeV}) \text{ [km^{-2} sr^{-1} yr^{-1}]}$

6.25

ApJL 853 (2018) L29; PoS (ICRC2021) 307; ApJ 935 (2022) 170

Future: Particle astronomy for mixed composition?

Select low-Z component if there is any. Correct deflections? Restrict analysis to certain sky regions?

arXiv:2311.12120; ApP 149 (2023) 102819

AugerPrime upgrade: to run until 2035

More details: talks of Martin Schimassek (today in Upgrade session) & Lukas Nellen (Computing, July 19)

- For each WCD + new electronics
 - + small PMT
 - + 3.8 m² scintillator detectors
 - + radio antenna

SD (750 m) of 23.5 km² area + underground muon detectors

AugerPrime: EPJ Web Conf., 210 (2019) 06002; PoS(ICRC2023)343, 344, 392

Radio Detector

> zenith angles > 65 degrees: complementary to scintillator detectors
 > full separation of EM (RD) and muon (WCD) components

Composition and hadronic interactions physics, enlarged declination range

Highlights from the Pierre Auger Observatory

X_{max} measurements with radio detector AERA

PoS(ICRC2021)387, PRD 109 (2024) 022002, PRL 132 (2024) 021001

Highlights from the Pierre Auger Observatory

X_{max} measurements with radio detector AERA

PoS(ICRC2021)387, PRD 109 (2024) 022002, PRL 132 (2024) 021001

Highlights from the Pierre Auger Observatory

Scientific data: next decade

Multihybrid data from AugerPrime

Scientific data: next decade

- + Reduced systematics in hadronic interaction models
- + Mass composition with AugerPrime and machine learning
- + Composition sensitivity in the flux suppression region
- + Sensitivity to 10% proton fraction in this region (important for GZK photon and neutrino fluxes)
- + Composition enhanced anisotropy studies
- + Search for new phenomena in hadronic interactions
- + Experience and data for the design of the next generation observatories

☑ Stay tuned: our refereed journal papers

Scientific data: next decade

- + Reduced systematics in hadronic interaction models
- + Mass composition with AugerPrime and machine learning
- + Composition sensitivity in the flux suppression region
- + Sensitivity to 10% proton fraction in this region (important for GZK photon and neutrino fluxes)
- + Composition enhanced anisotropy studies
- + Search for new phenomena in hadronic interactions
- + Experience and data for the design of the next generation observatories

☑ Stay tuned: our refereed journal papers

Alexey Yushkov

Don't miss: talk of Viviana Scherini, Outreach, July 19