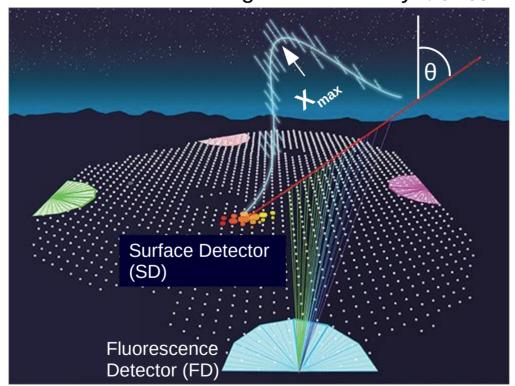


Probing hadronic interactions using the latest data from the Pierre Auger Observatory

Jakub Vícha

for the Pierre Auger Collaboration



vicha@fzu.cz

The Pierre Auger Observatory (auger.org, [NIM A 98 (2015) 172])

SD signal

- muon content
 - from buried scintillators, θ<60°
 - from N₁₉, θ>65°
 [Phys. Rev. D 91 (2015), 032003]
- muon production depth
 - for core distance
 r > 1500m, θ>65°
 [Phys. Rev. D 90 (2014) 012012]
- muon energy spectrum
 - from attenuation with θ and r

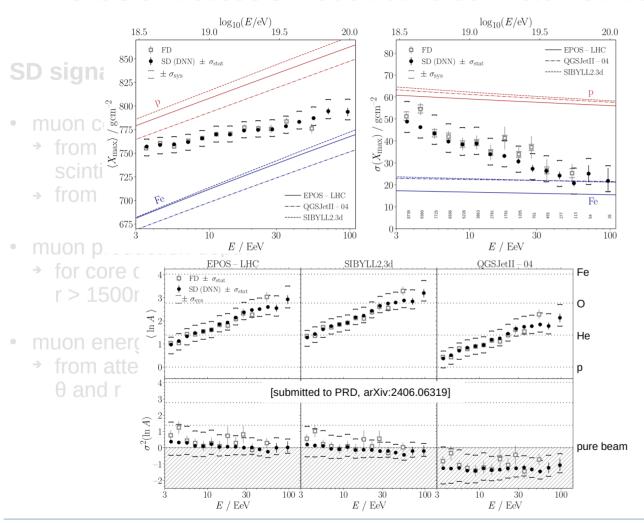
See linked references and talks of A. Yushkov and T. Fitoussi for details about measurements

FD longitudinal profile

- estimation of primary
 masses from X_{max} fits
 [PRD 90 (2014) 122006, Pos ICRC2023 (2023) 438]
- interpretation of X_{max}

moments using In A
[JCAP 02 (2013) 026, PoS (ICRC2023) 365]

 p-air cross-section from tail of X_{max} distribution

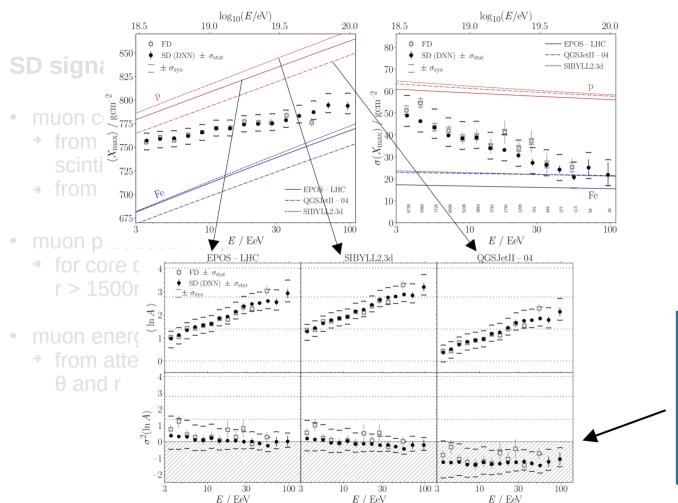

> [Phys. Rev. Lett. 109 (2012) 062002, PoS ICRC2023 (2023) 438]

 average shape of longitudinal profiles

[JCAP 03 (2019) 018]

 frequency of anomalous showers

[EPJ Web of Conferences 144 (2017) 01009]



FD longitudinal profile

- estimation of primary masses from X_{max} fits
- interpretation of X_{max} moments using In A

$$\langle \ln A \rangle = rac{\langle X_{
m max} \rangle - \langle X_{
m max}
angle_p}{f_E}$$

$$\sigma_{\ln A}^2 = rac{\sigma^2(X_{
m max}) - \sigma_{
m sh}^2(\langle \ln A \rangle)}{b \ \sigma_p^2 + f_E^2}$$
 [JCAP 02 (2013) 026]

showers

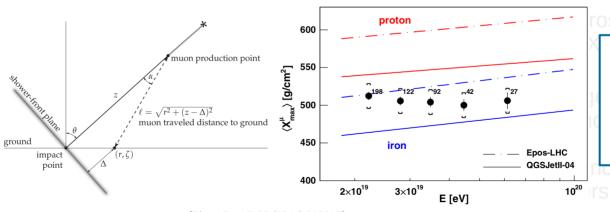
FD longitudinal profile

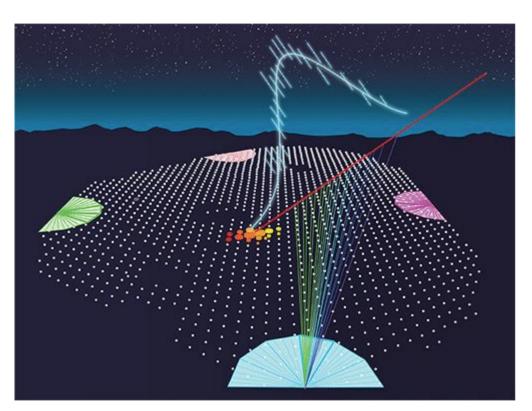
- estimation of primary masses from X_{max} fits
- interpretation of X_{max} moments using In A
- p-air cross-section from tail of X_m distribution
- Strong dependance on the MC X_{max} scale
- Indication of too shallow predictions of <X_{max}> for all three models!

SD signal

- muon content
 - from buried scintillators, θ<60°
 - \rightarrow from N₁₉, $\theta > 65^{\circ}$

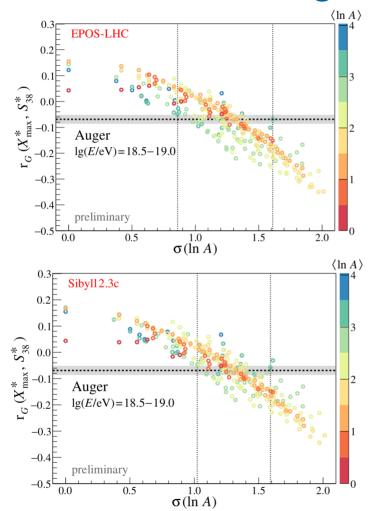
- for core distance
 r > 1500m, θ>65°
- muon energy spectrum
 - from attenuation with θ and r

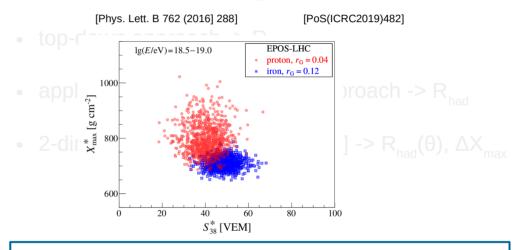

- Problem to describe the size of the muon content
 - factor ~1.3-1.6 !
- Muon fluctuations consistent with data (no obvious problem in the first interaction)


MPD tunable

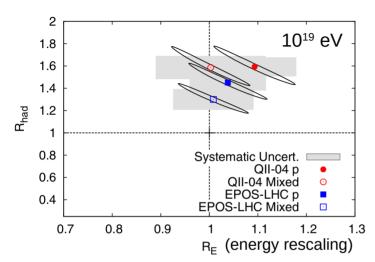
constrained)

by pion diffraction

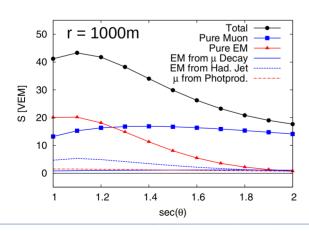

(loosely


Ground signal + Longitudinal profile

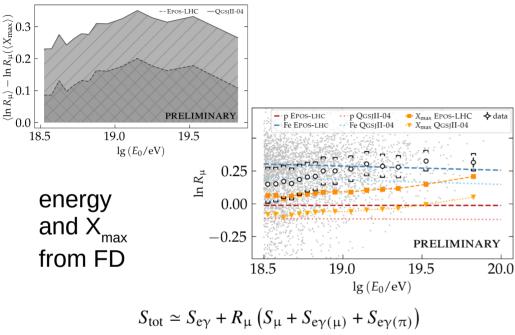
- correlation between X_{max} and S(1000)
- top-down approach -> R_{had}
- applying shower-universality approach -> R_{had}
- 2-dim distributions [S(1000), X_{max}] -> $R_{had}(\theta)$, ΔX_{max}



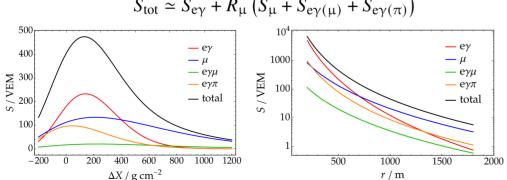
Ground signal + Longitudinal profile


• correlation between X_{max} and S(1000)

- ~Model-independent estimator of spread of beam masses
- Tension with light masses from X_{max} fits for QGSJet II-04 (too shallow X_{max} scale)


$$S_{\text{resc}}(R_E, R_{\text{had}})_{i,j} \equiv R_E S_{\text{EM},i,j} + R_{\text{had}} R_E^{\alpha} S_{\text{had},i,j}$$

Ground signal + Longitudinal profile


- correlation between X_{max} and S(1000)
- top-down approach -> R_{had} ~ 1.3 1.6 !
 [Phys. Rev. Lett. 117 (2016) 192001]
- applying shower-universality approach -> R_{had}
- 2-dim distributions [S(1000), X_{max}] -> $R_{had}(\theta)$, ΔX_{max}

- Mass from measured X_{max} depends on MC X_{max} scale
- Strong dependence on energy scale

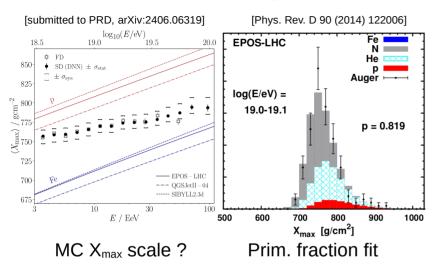
Ground signal + Longitudinal profile

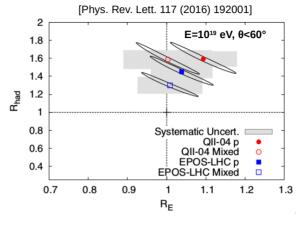
- correlation between X_{max} and S(1000)
- top-down approach -> R_{had}
- applying shower-universality approach
 -> R_{had} ~ 1.1 1.3 [Pos(ICRC2023)339, arXiv:2405.03494]
- 2-dim distributions [S(1000), X_{max}] -> $R_{had}(\theta)$, ΔX_{max}

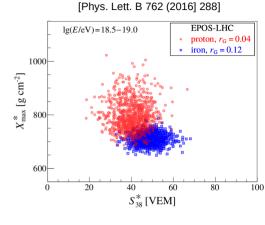
- R_{had} smaller than in top-down approach
- \sim Insensitive to the MC X_{max} scale

Summary of tests of models using Auger data

test	energy / EeV	<i>θ</i> / °	Epos-LHC	QGSJET-II-04	SIBYLL 2.3d
$X_{\rm max}$ moments	\sim 3 to 50	0 to 80	no tension	tension 	no tension (2.3c)
X_{max} : $S(1000)$ correlation	3 to 10	0 to 60	no tension	tension	no tension (2.3c)
mean muon number	~10	\sim 67	tension	tension	tension
mean muon number	0.2 to 2	0 to 45	tension	tension	_
fluctuation of muon number	4 to 40	\sim 67	no tension	no tension	no tension
muon production depth	20 to 70	\sim 60	tension	no tension	_
S(1000)	~10	0 to 60	tension	tension	_


- All models have problems ...
- Caveat: mass (MC X_{max} scale) & energy scale
- Can we test the models better?


Ground signal + Longitudinal profile


- correlation between X_{max} and S(1000)
- top-down approach -> R_{had}
- applying universality approach -> R_{had}
- 2-dim distributions [S(1000), X_{max}] -> $R_{had}(\theta)$, ΔX_{max}
 - Rest of the talk

[Phys. Rev. D 109 (2024) 102001]

Mass composition & tests of hadronic interactions

Deficit in MC hadronic signal

~ model-independent estimation of beam mixing from $[X_{max}, S(1000)]$ correlation

Following work:

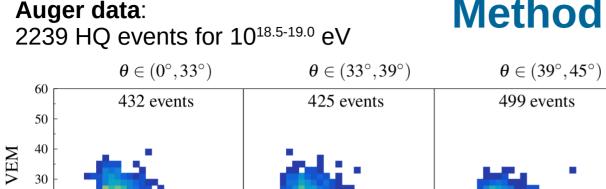
Mass composition fit of observed $[X_{max}, S(1000)](\theta)$ distributions with free modification of MC predictions not only of hadronic signal but also of X_{max}

Method

 $S = S(1000) \left(\frac{E^{\text{ref}}}{E}\right)^{1/B}$

 $\theta \in (45^{\circ}, 51^{\circ})$

447 events


436 events

 $X = X_{\text{max}} + D \lg \left(\text{E}^{\text{ref}} = 10^{18.7} \text{ eV} \right)$

 $\theta \in (51^\circ, 60^\circ)$

35

10

20

10

/ VEM

EPOS-LHC

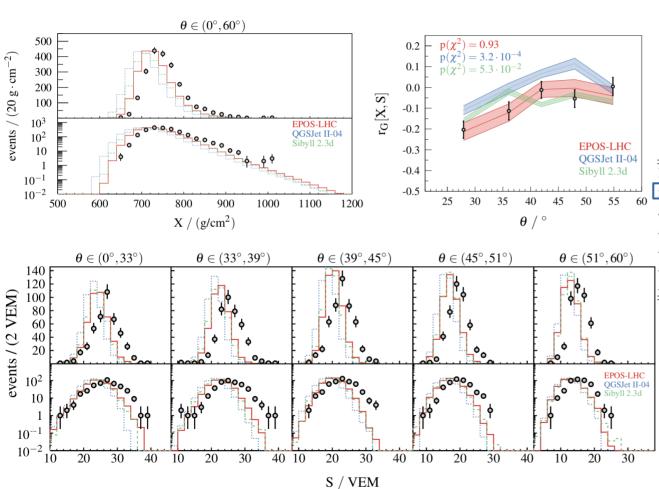
Example of

700

 $X / (g/cm^2)$

MC template

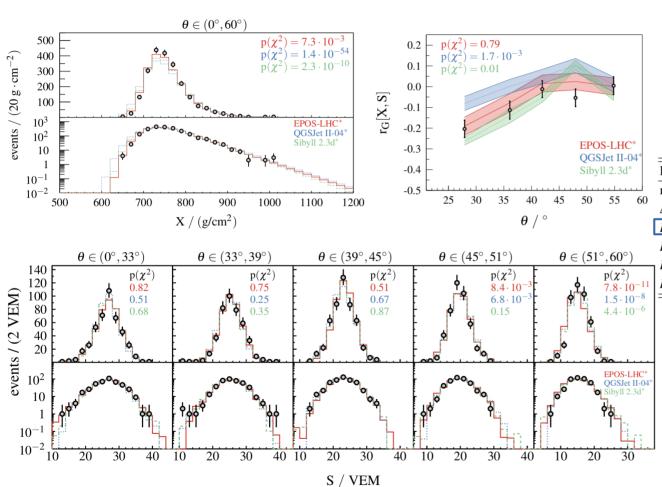
 $X / (g/cm^2)$ $\theta \in (0^{\circ}, 33^{\circ})$ $\begin{cases} \sum_{k} \sum_{j} (C_{jk} - n_{jk} + n_{jk} \ln \frac{n_{jk}}{C_{jk}}), & n_{jk} > 0 \\ \sum_{k} \sum_{j} C_{ik}, & n_{jk} = 0 \end{cases}$


> **Freedom** in X_{max} (ΔX_{max}) and S(1000) (R_{had} (θ)) and primary fractions Change of S_{had} and S_{em} due to ΔX_{max}

Simultaneous log-likelihood ratio fit of two-dimensional distributions of X_{max} and S(1000) in 5 zenith-angle bins with **MC templates** for combinations of four primary nuclei (p,He,O,Fe)

incorporated **ICHEP 2024** J. Vícha (FZU): Probing hadronic interactions at the Pierre Auger Observatory

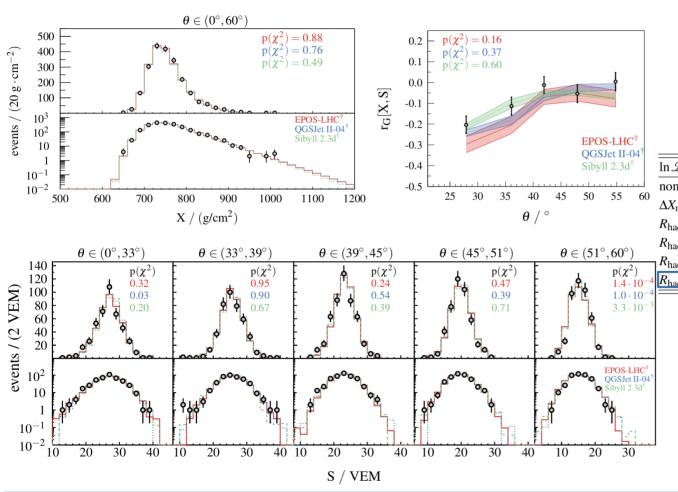
1000 1100 1200


Improvement in data description

	$ln\mathcal{L}_{min}$	Epos-LHC	QGSJET-II-04	SIBYLL 2.3d
^	none	2022.9	4508.0	2496.5
U	$\Delta X_{ m max}$	738.6	1674.8	1015.7
	$R_{\rm had} = {\rm const.}$	489.2	684.4	521.6
	$R_{\mathrm{had}}(\boldsymbol{\theta})$	489.2	673.9	517.6
	$R_{\rm had} = {\rm const.} \ {\rm and} \ \Delta X_{\rm max}$	452.2	486.7	454.2
	$R_{\rm had}(\theta)$ and $\Delta X_{\rm max}$	451.9	476.3	451.6

J. Vícha (FZU): Probing hadronic interactions at the Pierre Auger Observatory

Improvement in data description

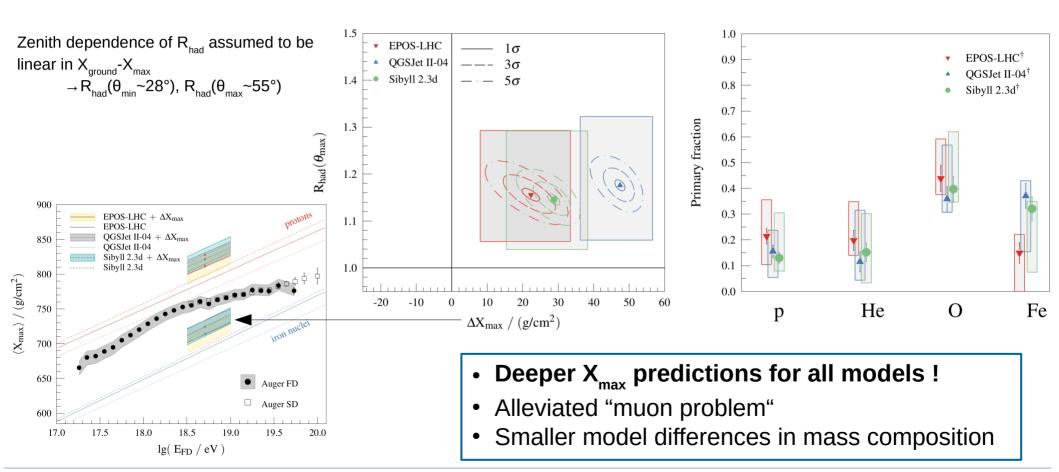


$\overline{\ln \mathscr{L}_{\min}}$	Epos-LHC	QGSJET-II-04	SIBYLL 2.3d
none	2022.9	4508.0	2496.5
$\Delta X_{ m max}$	738.6	1674.8	1015.7
$R_{\rm had} = {\rm const.}$	489.2	684.4	521.6
$R_{\text{had}}(\theta)$	489.2	673.9	517.6
$R_{\rm had} = {\rm const.}$ and $\Delta X_{\rm max}$	452.2	486.7	454.2
$R_{\rm had}(\theta)$ and $\Delta X_{\rm max}$	451.9	476.3	451.6

15/20

J. Vícha (FZU): Probing hadronic interactions at the Pierre Auger Observatory

Improvement in data description

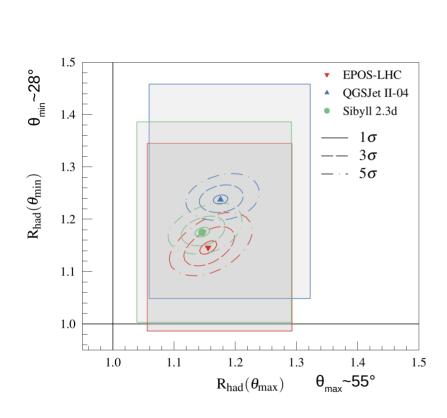


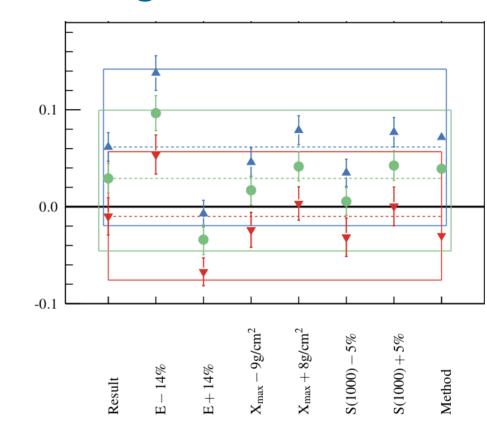
p-values of fits from MC-MC tests > 10% for all three models

$\overline{ \ln \mathscr{L}_{\min} }$	Epos-LHC	QGSJET-II-04	SIBYLL 2.3d
none	2022.9	4508.0	2496.5
ΔX_{\max}	738.6	1674.8	1015.7
$R_{\text{had}} = \text{const.}$	489.2	684.4	521.6
$R_{\rm had}(\theta)$	489.2	673.9	517.6
$R_{\rm had} = {\rm const.} \ {\rm and} \ \Delta X_{\rm max}$	452.2	486.7	454.2
$R_{\rm had}(\theta)$ and $\Delta X_{\rm max}$	451.9	476.3	451.6

Significant improvement >5σ using R_{had} and ΔX_{max} (Likelihood ratio tests for nested model using Wilks' theorem)

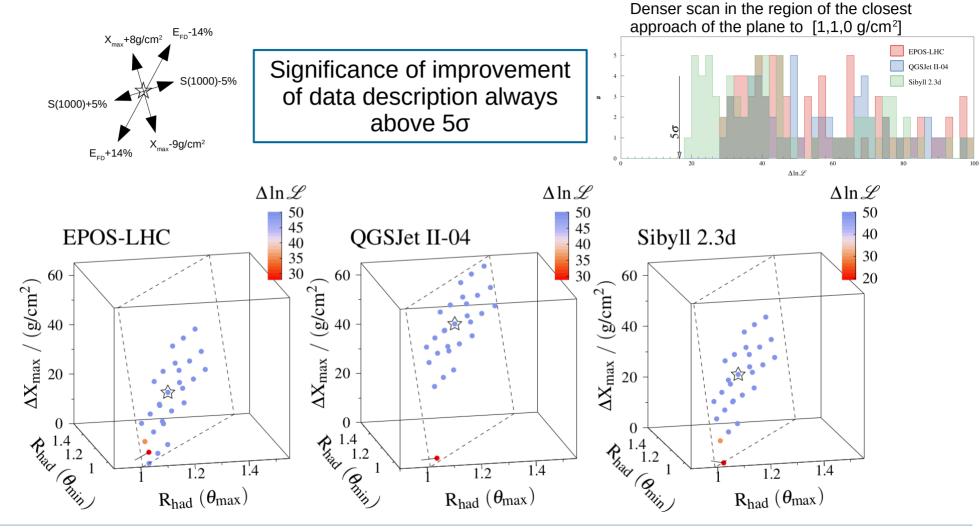
Fitted parameters


J. Vícha (FZU): Probing hadronic interactions at the Pierre Auger Observatory


ICHEP 2024

Attenuation of hadronic signal with θ

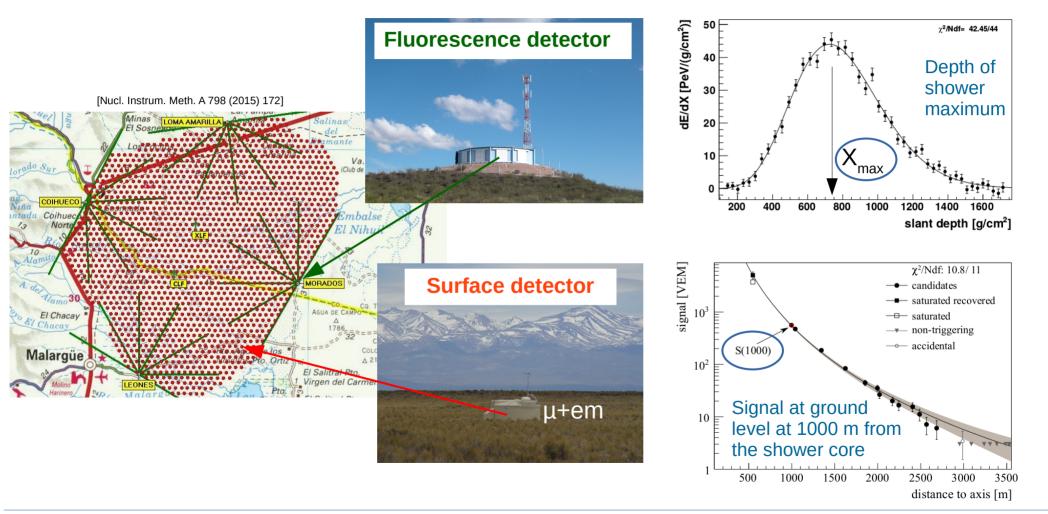
 $m R_{had}(heta_{max})$


 $R_{had}(\theta_{min})$

Indication of harder muon spectra in QGSJet II-04 than in data

Scanning in combinations of experimental systematics

Conclusions

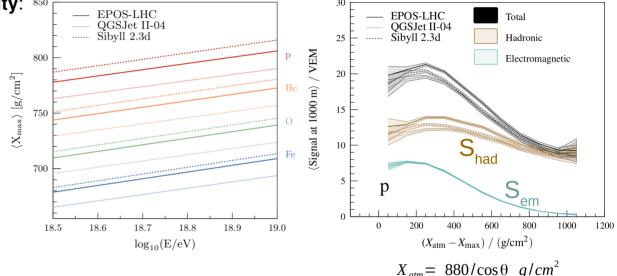

- Models of hadronic interactions fail to describe data of the Pierre Auger Observatory
- To improve description of combined SD and FD data at $10^{18.5-19.0}$ eV, $\theta < 60^{\circ}$, we need from all current models:
 - more generated muons by about (15 to 25)% alleviated "muon problem"
 - deeper generated X_{max} by about **(20 to 50)** g/cm² consequence of possibly heavier mass composition
- This improvement in data description using R_{had} and $\Delta X_{max} > 5\sigma$ for any linear combination of experimental systematic uncertainties Check [Phys. Rev. D 109 (2024) 102001] for more details

Outlook:

- Auger Phase I data (+~30%): extend energy range, adopt possible mass-dependence
 of modifications and study effects of fluctuations, test new models (p+O run @ LHC)
- AugerPrime data: better discrimination of hadronic signal, core distance dependance

Backup slides

Hybrid detection at the Pierre Auger Observatory

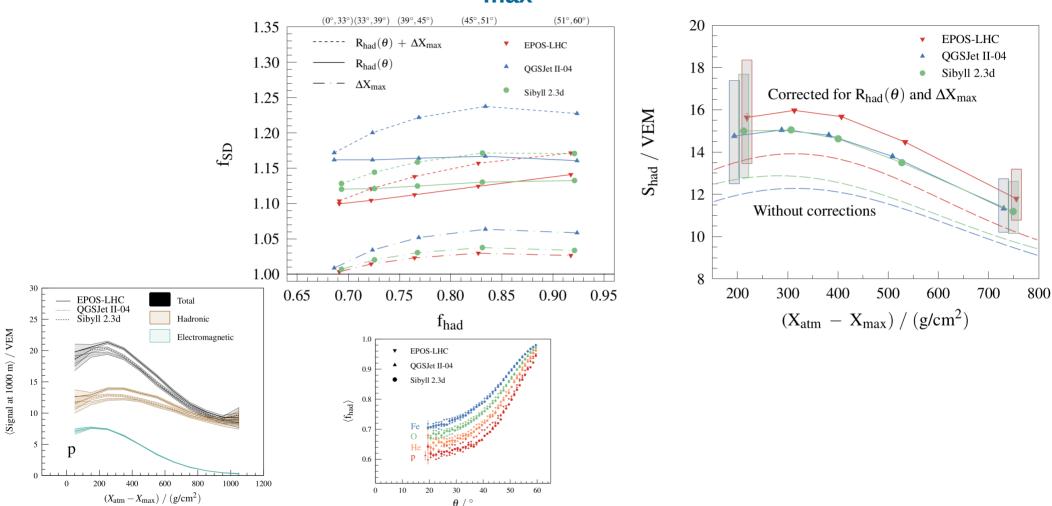


Motivations for modifications of MC predictions

Properties of 4-component shower universality: 850

[Astropart. Phys. 87 (2017) 23, Astropart. Phys. 88 (2017) 46]

- S(1000) = S_{had} + S_{am}
- S_{em} very universal
- **Main differences** between model predictions:
 - Scale of $\langle X_{max} \rangle$ and $\langle S_{had} \rangle (\theta)$ are approx. primary and energy independent



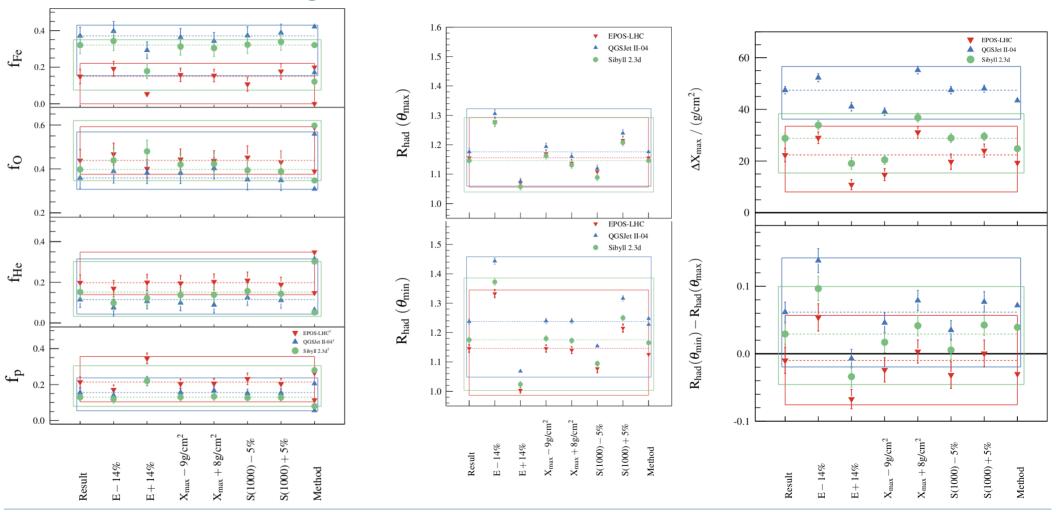
Caveat: no modifications in fluctuations or mass-dependies etc. considered

ad-hoc modifications

$$X_{max} \rightarrow X_{max} + \Delta X_{max}$$
$$S_{had}(\theta) \rightarrow S_{had}(\theta) \cdot R_{had}(\theta)$$

Effect of modified X_{max} on the ground signal

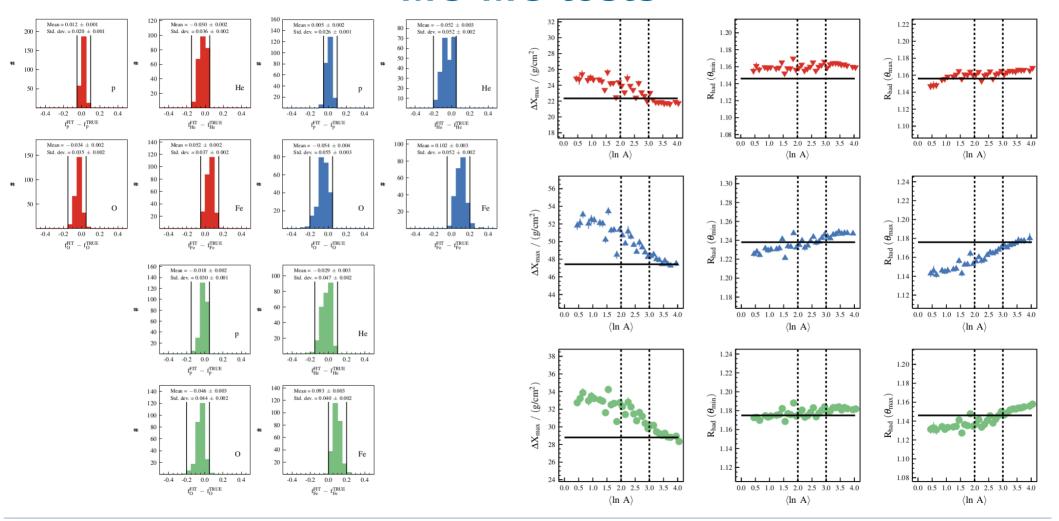
J. Vícha (FZU): Probing hadronic interactions at the Pierre Auger Observatory


Assumption on primary species

• ΔX_{max} decreases by about 5-7, 10-17 and 30-40 g/cm² and R_{had}(θ) increases by about 2-5%, 4-9% and 15-20% when the heaviest primary Fe is replaced by Si, O and He, respectively

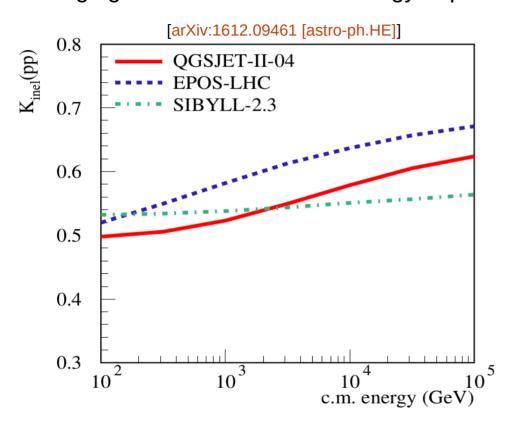
$\overline{\ln \mathscr{L}_{\min}}$	EPOS-LHC	QGSJET-II-04	SIBYLL 2.3d
p He	518.3	633.5	563.5
p He O	467.5	523.3	486.6
p He O Fe	451.9	476.3	451.6

Significance of improvement of data description above 5σ


Systematic uncertainties

J. Vícha (FZU): Probing hadronic interactions at the Pierre Auger Observatory

ICHEP 2024

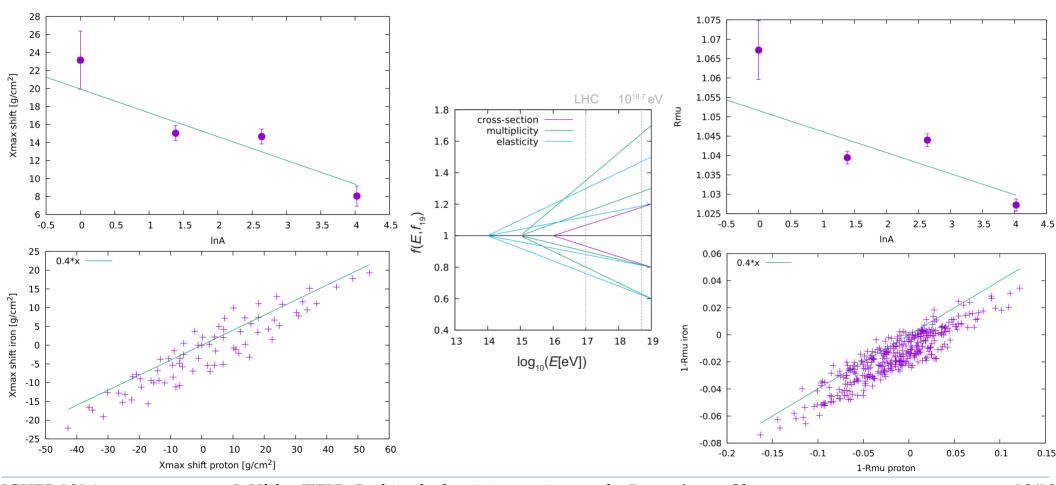

MC-MC tests

J. Vícha (FZU): Probing hadronic interactions at the Pierre Auger Observatory

Possible mass-(in)dependence of X_{max} shift

"changing the normalization of energy dependence" → mass independent modifications

multiplicity: $N \propto N_0 \cdot E^{\alpha}$ inelasticity: $\kappa \propto \kappa_0 \cdot E^{-\omega}$


$$X_{\text{max}}^{A} = X_1^A + X_0 \ln \frac{\kappa E}{A \cdot 2N\xi_c^{\pi}} = X_1^A + (1 - \alpha - \omega) \cdot (X_0 \ln \frac{E}{A \cdot \xi_c^{\pi}}) + X_0 \cdot (\ln \kappa_0 - \ln N_0)$$

$$\begin{array}{ccc} \kappa_0 \rightarrow f_{\kappa} \kappa_0 \\ N_0 \rightarrow f_N N_0 \end{array} \Rightarrow X_{max}^A = X_{max}^A + X_0 (\ln(f_{\kappa}) - \ln(f_N)) \end{array}$$

MOCHI (preliminary)

[PoS(ICRC2023)245]

"changing the shape of energy dependence" → mass-dependent modifications

