Measurement of Inelastic Hadronic Cross Sections in Space with DAMPE

Paul Coppin (for the DAMPE collaboration)

-

The DAMPE experiment

- Also called Wukong
- Satellite launched in December 2015
- Sun-synchronous orbit (Altitude - 500 km, Period - 95 minutes, Oriented toward zenith)
- Records $\sim 5 \times 10^6$ events per day
- Large effective area and deep calorimeter (32 radiation lengths)
 - Electrons / photons:
 5 GeV to 10 TeV ; acceptance ~0.3 m² sr
 - CR ions: 10 GeV to ~500 TeV; acceptance ~ $0.1 \text{ m}^2 \text{ sr}$

Collaboration between:

China

- Purple Mountain Observatory, CAS, Nanjing
- University of Science and Technology of China, Hefei
- Institute of High Energy Physics, CAS, Beijing
- Institute of Modern Physics, CAS, Lanzhou
- National Space Science Center, CAS, Beijing

Switzerland

University of Geneva

Italy

- INFN Perugia and University of Perugia
- INFN Bari and University of Bari
- INFN-LNGS and Gran Sasso Science Institute
- INFN Lecce and University of Salento

The DAMPE experiment

• Layered design with 4 sub-detectors:

- Plastic scintillator detector (PSD)
 → Charge measurement primary CR
- Silicon-Tungsten tracKer-converter (STK)

 → Measures track & charge primary CR
 → Converts photons into EM shower
- Calorimeter (BGO)
 → Measures shower energy deposition
- (NeUtron detector, NUD)
 - → Differentiate EM from hadronic showers, not used in this work.

CR ion flux measurements

- Excellently equipped for the direct measurement of CR ions
 - Proton+helium flux up to 0.5 PeV
 - Also heavier ions (carbon, oxygen, etc.)
- Accuracy ion fluxes limited by hadronic model
- For DAMPE and other experiments equally so
- Cross sections
 unmeasured...

Flux of proton+helium ່ທ REAM-III (2017 Φ(E)(GeV¹ UCLEON (KLEM: 2017) DAMPE (this work 21 30 10^{2} 10^{3} 10^{4} Primary energy (GeV Uncertainties (% Hadronic mode Jncertainty Statistics 10^{3} 10⁵ Primary energy (GeV PRD: 10.48550/arXiv.2304.00137 (in print

18/07/2024

Inelastic hadronic cross sections

Experimental constraints:

- Protons → Can rely on measurements by colliders. For instance, LHC measurements:
 - Proton-Proton at $\sqrt{s} = 13 \text{ TeV}$ 10.1016%2Fj.physletb.2016.06.027
 - \rightarrow >> PeV energy in fixed target equivalent
- lons heavier than proton:
 - Measurements very limited, and usually sub-GeV
 - Rely on phenomenological model (e.g. Glauber or Gribov–Regge)

<u>10.1103/PhysRev.100.242</u> <u>10.1016/0550-3213(70)90511-0</u> <u>1968JETP...26..414G</u> • Proton-Lead at $\sqrt{s_{NN}} = 5 \text{ TeV}$

18/07/2024

Cross sections with DAMPE

• Data:

- Good statistics (88 months in this work)
- Energy range: ~10 GeV up to few hundred TeV
- CR ions from proton up to Nickel
- Measurement (this work):
 - Inelastic hadronic cross section
 - Proton and helium primary
 - Bi₄Ge₃O₁₂ target (calorimeter)

 \Rightarrow First step is to create proton (helium) sample

Event selection

- 1. Trigger: Events with MIP energy or higher
- 2. Pre-cuts \rightarrow contained events \rightarrow using ML based track reconstruction
- 3. Select events that:
 - 1. Satisfy basic quality cuts
 - 2. Removal electron background
 - 3. Removal events interacting in PSD
 - 4. Fall in the proton or helium charge window
- \Rightarrow >80% signal efficiency for contained events, while background ≈0.2%

Cross section measurement

- Cross section ↔ point of inelastic interaction
- Interaction depth classifier:
 - Gradient boosted decision tree (XGB)
 - 16 output classes:
 - Before calorimeter

• One per layer (14x)

• After calorimeter

18/07/2024

Cross section measurement

- Cross section \leftrightarrow point of inelastic interaction
- Modify MC cross section until it matches data:

 $\sigma_{true} = \kappa \cdot \sigma_{MC}$

• Compare MC (α_i) to data $\left(\frac{N_i}{N_{tot}}\right)$:

$$\mathcal{L}(\kappa) = \frac{N_{tot}!}{N_2! N_3! \dots N_{10}!} \prod_{i=2}^{10} \alpha_i^{N_i}(\kappa)$$

Energy dependence

- Cross section measured as function of kinetic energy per nucl.
 - Bin events in total energy deposited in calorimeter
 - Determine corresponding kinetic energies from MC
 - Fit Landau+Gaussian
 → peak: reference value
 ⇒ width: uncortainty
 - \rightarrow width: uncertainty

Uncertainties

- Statistical uncertainty dominates in last bin ullet
- Systematic uncertainty: ightarrow
 - Largest Spectral index **Event selection** Classifier • Smallest Energy scale

42nd ICHEP - Cross section measurements with DAMPE - Paul Coppin

ullet

Results

PROTON: Within error-band of measurements at same energy; but slightly lower normalization. Consistent with CMS.

HELIUM-4:

Good agreement with other measurements. Slightly steeper rise, but models within analysis uncertainty.

- Model comparisons: EPOS-LHC, QGSJetII-04, DPMJET3
- Other measurements not for BGO, so scaled: $\sigma_{target}^{EPOS-LHC} / \sigma_{BGO}^{EPOS-LHC}$

18/07/2024

Effect on flux normalisation

• Effective detector acceptance depends on cross section:

$$\Phi(E \to E + \Delta E) = \frac{N}{\mathcal{A}_{eff} \cdot \Delta E \cdot \Delta t}$$

Higher cross section

 → lower flux (and vice versa)

- Compare acceptances, FLUKA over Geant4
 - Correcting cross section in MC to measured result significantly improves agreement
 - Minor effect for proton, major effect for helium

18/07/2024

Conclusion & outlook

- Hadronic inelastic cross section is important systematic affecting CR ion-flux normalization
- Presented inelastic cross section measurement
 - Bi₄Ge₃O₁₂ target (calorimeter)
 - Proton: 18 GeV 9 TeV
 - Helium-4 (alpha): 5 GeV/n − 3 TeV/n
 → First measurement at these energies!
- Outlook:
 - Near future: Analysis of carbon and oxygen
 - Future detectors such as HERD have the potential to extend measurements to much higher energies

18/07/2024

Backup slides

18/07/2024

42nd ICHEP - Cross section measurements with DAMPE - Paul Coppin

15

1. Plastic scintillator \rightarrow identify absolute charge of particle

- 82 bars in 2 double layers
- Overall efficiency ≥ 0.9975
- Particles lose energy through ionisation energy losses: $dE/dx \propto Z^2$

18/07/2024

2. Tracker

DARK MATTER DAMPE ARTICLE EXPLOREN

- 768 sensors of 768 strips each
 ~50 micron positional resolution

 → 0.1-1° pointing (electrons & photons)
- Also charge identification

18/07/2024

3. Calorimeter

• 308 bars spread over 14 layers

Readout by PMT at each end of crystal

Bi₄Ge₃O₁₂ material

• Energy resolution:

• ~1% for electrons (shower contained)

~40% for ions (shower not-contained)

18/07/2024

4. Neutron detector

- 4 boron-doped plastic scintillators
- $B_{10} + n \rightarrow Li_7 + \alpha + \gamma$
- Hadronic showers produce ~10 times more neutrons than EM showers
- Provides additional discrimination power in electron analysis to reject dominant proton background

Detector calibration

- DAMPE has been stably taking data for more than 8 years
- PMT gain, trigger thresholds, etc. are continually calibrated to ensure time-independent detector response
- Figure below shows per day rate of high-energy contained events

Event selection

- Rejection of electrons (and positrons)
- XTRL variable has been developed (see doi: 10.1038/nature24475)

Deuteron contribution

- DAMPE can measure charge but not mass
- No way to distinguish proton from deuteron
- Ratio $\Phi(^{2}H)/\Phi(^{1}H)$ has been measured by AMS doi.org/10.1016/j.nuclphysbps.2019.07.012
- Accounts for few percent of flux $\Rightarrow \le 1.8\%$ effect on measurement

Helium-3 contribution

- DAMPE can measure charge but not mass
- No way to distinguish helium-3 from helium-4
- Ratio $\Phi(^{3}\text{He})/\Phi(^{4}\text{He})$ has been measured by AMS 10.1103/PhysRevLett.123.181102
- Accounts for few percent of flux $\Rightarrow \le 1.2\%$ effect on measurement

Reweighting procedure

- Consider a fixed:
 - Particle type
 - Primary energy
 - Incident angle

- Use existing MC to parametrise the probability that such a particle interacts as a function of the depth (z) in the detector
- Rescale the CDF according to: $CDF_{new}(z) \rightarrow 1 - (1 - CDF(z))^{1+\alpha}$

Here, α is the change in cross section, e.g. $\alpha = 0.5$ for a 50% increase as shown in the figure

• Ratio of PDFs tells us the weighting factor as function of z

18/07/2024

Reweighting procedure

- Next step, determine weights over full parameter space (bin MC in primary energy; incident angle; z_{stop})
- To reweight a given event, do 3d interpolation (θ, E_p, z_{stop})

18/07/2024

Comparison between target materials

Our measurement is for a Bi₄Ge₃O₁₂ target Measurements not for BGO are scaled: $\sigma_{target}^{model}/\sigma_{BGO}^{model}$ Three models considered: EPOS-LHC, QGSJetII-04, DPMJET3 \rightarrow 1-3% difference, no effect on interpretation result

Comparison between target materials

Our measurement is for a Bi₄Ge₃O₁₂ target Measurements not for BGO are scaled: $\sigma_{target}^{model}/\sigma_{BGO}^{model}$ Three models considered: EPOS-LHC, QGSJetII-04, DPMJET3 \rightarrow DPMJET3 & EPOS-LHC very close, QGSJetII-04 higher

Particle tracking

- Primary track drowns in a sea of secondaries
 - Pre-showering before the calorimeter
 - Back-splash from calorimeter
 - Majority of events affected
 - Gets worse at higher energies
- Not similar to LHC style tracking:
 - No magnetic field
 - Interaction point (axis) unknown
 - Way higher energies...
 - More passive material in/around tracker
- \Rightarrow Very challenging for conventional algorithms!

Particle tracking

- Area where ML shows huge potential for improvement!
- Two-step approach:
 - Initial prediction by calorimeter:
 - 14 layers of 22 bars \rightarrow Image
 - Apply convolutional neural network
 - Refinement by tracker:
 - Using calo-prediction to identify region of interest (ROI)
 - Take Hough transform (works better than applying network on raw image)
 - Apply CNN convolutional neural network
 - Output 4 variables (fully characterising track) dir: (v_x, v_y, 1); pos: (x, y, 0)

p standard rec

E_{dep}=10 - 20 TeV

Particle tracking

Developped CNNs outperform classical algorithms by order ulletof magnitude at high energies!

18/07/2024

Particle tracking

- At high-energies, the PSD gets overwhelmed
 → Very challenging to distinguish e.g. proton from helium
- With accurate tracking, the signal strength in the tracker can be used for particle identification → Much better separation power!

Simulation models

- Geant4 version 4.10.5
- FLUKA version 2011.2X.7
- Downgoing particle sampled in 'half-sphere' around detector
- Simulated energy spectrum per decade: $\frac{dN}{dE} \propto E^{-1}$
- Weighted to an $\Phi \propto E^{-2.65}$ spectrum

Geant4-FLUKA to data comparisons

18/07/2024

Geant4-FLUKA to data comparisons

18/07/2024