Status of KM3NeT the kilometre cube neutrino telescope

011

Paschal Coyle (CPPM) on behalf of the KM3NeT Collaboration

ICHEP 2024, Prague 19/7/24

Neutrino telescopes: science

+ oceanography, biology, bioacoustics, seismology,...

Neutrinos: cosmic messengers

Neutrinos: neutral, stable, weakly interacting

not absorbed by background light/CMBSubscriptionnot absorbed by matterSubscriptionnot deviated by magnetic fieldsSubscription<

'Smoking gun' signature for hadronic processes

Correlated in time/direction with electromagnetic and gravitational waves

New window of observation on the Universe

KM3NeT

Multi-site, deep-sea infrastructure Single collaboration, single technology Selected for ESFRI roadmap 2016

Oscillation Research with Cosmics In the Abyss

Astroparticle Research with Cosmics In the Abyss

<u>KM3NeT 2.0: Letter of Intent</u> <u>http://dx.doi.org/10.1088/0954-3899/43/8/084001</u> J. Phys. G: Nucl. Part. Phys. 43 (2016) 084001

KM3NeT building block

200m/800m

- 31 x 3" PMTs
- All data to shore: Gbit/s optical fibre
- White Rabbit time synchronisation
- LED flasher & acoustic piezo
- Tiltmeter/compass
- Low drag

See:

I. C. Rea (poster) The multi-PMT DOM of KM3NeT

Instrumented mass 7 Mton 500*2 Mton

Detector construction

Current Status: 51 Dection Units deployed

Effective areas: KM3NeT vs ANTARES

Event Topologies

CC v_e + all flavours NC $CC v_{\mu}$ $CC v_{\tau}$ Atmospheric muon 3. "double bang" 1. track like events 2. shower like events **BACKGROUND !!** ν / l[±] $\nu_X^{(-)}$ $\nu_{\tau \to \tau} \rightarrow \tau + \text{shower}$

Tracks @ E_v >100 TeV Ang. res. below 0.1° - Energy res. ~ factor 2 Shower @ E_v >100 TeV Ang. res. below 2° - Energy res. ~6%

Neutrino oscillations with atmospheric neutrinos

Oscillation results with ORCA6-11

Tau appearance / Sterile neutrinos

KM3NeT/ORCA6 preliminary, 433 kton-years

KM3NeT

DeepCore: [arXiv:2407.01314] IceCube: [arXiv:2406.00905]

ANTARES: J. HEP 2019, 113 SK: Phys. Rev. D 91, 052019

L. Bailly-Salins Sterile neutrinos

A. C. Lastoria Tau appearance mesurements

Prospects for neutrino mass ordering

projections including detector construction schedule show 5σ NMO determination in reach within this decade when combined with JUNO

KM3Ne¹

KM3NeT searches for diffuse fluxes

KM3NeT/ARCA rapidly approaching ANTARES/IceCube sensitivities

See: V. Kulikovskiy Joint searches for neutrino point-like and diffuse sources with KM3NeT/ANTARES

KM3NeT point source searches

Angular resolution (tracks)

106

107

KM3NeT upper limits are quickly reaching the ANTARES 15 year limits

 10^{-6}

 10^{-1}

 10^{-8}

 10^{-9}

 10^{-10}

-1.00

 $\mathbb{D}_{GeV}^{\nu_i + \bar{\nu}_i} ~ E^{2.0}$ for 90% CL [GeV cm^{-2} s^{-1}]

ARCA6-8 (302 days)

ARCA6-21 (646 days)

Observed limits

-0.75

Sensitivity

-0.50

-0.25

Angular resolution improves as detector grows

108

ARCA230 expected sensitivities

Diffuse flux

NGC1068

 5σ in ~ 0.5 year

 3σ in one year

Multi-messenger program

Receiving alert system operative $rac{1}{2}$

Real Time Analysis platform already active from Nov 2022 in ARCA/ORCA

Sending alert system under test rightarrow ri rightarrow rightarrow rightarrow rightar

KM3NeT

Detection of an exceptional event

- Significant event observed with huge amount of light
- Horizontal event (1° above horizon)
- 3672 PMTs (35%) were triggered in the detector
- Muons simulated at 10 PeV almost never generate this much light

– Likely multiple 10's of PeV

VHE event display

Consistent with muon neutrino

Event is well reconstructed as a high energy muon crossing entire ARCA21 detector Expected zenith distribution for 100 PeV neutrinos

Rich detail

- Light profile consistent with at least 3 large energy depositions along the muon track
- Characteristic of stochastic losses from very high energy muons

Rich detail

- Light profile consistent with at least 3 large energy depositions along the muon track
- Characteristic of stochastic losses from very high energy muons
- Space-time distribution of light consistent with shower hypothesis associated with these energy depositions
- Low scattering is key to observing this richness of detail

Not an atmospheric muon

KM3NeT

Passes through continental shelf/Malta actual amount of matter is even larger...

Summary

Water based neutrino telescopes:

- all sky
- angular resolution -> precision multi-flavour astronom
- location -> galactic + extra-galactic sources
- ARCA/ORCA -> full energy range
- marine observatory for environmental sciences

KM3NeT taking data and growing rapidly:

- competitive measurement of neutrino oscillation parameters
- First point source limits, ATELs reacting to external alerts
- completion 2028

Exceptional >10 PeV energy event detected-stay tuned

New collaborators very welcome- come and join the adventure!

KM3NeT @ ICHEP

P. Coyle Status of the KM3NeT neutrino telescope C. Lastoria Exploring tau appearance mesurements in KM3NeT/ORCA Multi-messenger results of the KM3Net real time analysis J. Palacios Gonzalez Measurement of atmospheric neutrino oscillations with KM3NeT/ORCA A. Lazo Pedrajas L. Bailly-Salins Sterile neutrinos A. Saina Dark matter searches with the KM3neT neutrino telescope Joint search for neutrino point-like and diffuse sources with KM3NeT/ANTARES V. Kulikovskiy The multi-PMT optical module of KM3NeT I. C. Rea (poster)

BACK UP

Marine science instrumentation

Climate change in the deep sea

Temperature

Oxygen

Albatross autonomous Acoustic mooring

Single DOMs -> Supernova detection

- 7 kHz random background, mostly from ⁴⁰K decays
- Constant natural source to calibrate the charge and timing of PMTs
- Can use single DOM variables to search for supernova neutrino bursts

ARCA28+ORCA23

Full KM3NeT: >5 σ for ARCA+ORCA for 27M $_{\odot}$ at a distance <50 kpc

An on-line alert system for CCSN already implemented Integrated in SNEWS

PMT multiplicity plot

SN signal above background

Multi-messenger diffuse flux

Similar energies in gamma rays, neutrinos & cosmic rays injected into our Universe

What are the sources?!

Instantaneous fields of view at PeV energies

EeV

Pe\

At highest energies, neutrinos don't make it through the Earth: horizontal tracks are golden channel

Instantaneous field of view with horizontal tracks

Events: 697995

32

Dark matter-indirect detection

Galactic Centre

Phys.Lett. B759 2016

33

Dark Matter

the ANTARES limits

The Sun

Galactic Centre

ARCA6 + ARCA8 ICRC2023 PoS 1377

Non-Standard Interactions

Angular Resolutions

Tracks

Better than 0.1° > 20 TeV

Showers Better than 1° > 30 TeV

Taus Better than 1° for tau track length > 22 m

NGC 1068: The Disk Corona model

- AGN powered by a SMBH with mass ~10⁷ – 10⁸ solar masses
- It is close! ~14.4 Mpc
- Intrinsically the brightest Seyfert in the X-ray band

Electron and protons are accelerated in the high field regions associated with the black hole and the accretion disk

- They produce neutrinos in the optical thick corona
- Gamma-rays are absorbed

Multi-messenger example: Kilonova GWs

ORCA115: neutrino mass ordering

3 years

6 yrs & combination with JUNO

 $2.5-5\sigma$ determination of Neutrino Mass Ordering possible in 3 years

Combination power relies on tension between best-fit of Δm_{31}^2 in "wrong ordering" between JUNO and ORCA

EVENT TYPE AND ANGULAR RESOLUTION

	TRACK*	CASCADE*
ANTARES	0.3°	3 °
КМЗМЕТ	0.1°	1.5°
ICECUBE	0.3°	7°-8°
BAIKAL - GVD	0.25°	3°-3.5°

Tracks: very long path (Eµ>1TeV several km) Big lever arm

Good angular resolution

Cascades: small path (Ecasc >1TeV some tens of meters)

Modest angular resolution

*Resolution at 100 TeV

KM3NeT

IC resolution for tracks from arXiv:1910.08488, 15 October 2019

Tracks: very long path (Eµ>1TeV several km) Neutrino interaction vertex far from the detector

Modest energy resolution

Cascades: small path (E_{casc} >1TeV some tens of meters)

All the energy released inside the detector

Good energy resolution

	T R A C K I N L O G (E)	CASCADE
ANTARES	35%	5 %
КМЗМЕТ	27%	5 %
ICECUBE	~ 3 0 %	10%
BAIKAL - GVD		

KM3NeT

IIC energy resolution for cascades

