The LIGO-Virgo-KAGRA Observing Run 4: May 2023 – June 2025

Nicolas Arnaud (<u>nicolas.arnaud@ijclab.in2p3.fr</u>) Laboratoire de Physique des Deux Infinis Irène Joliot-Curie (Université Paris-Saclay & CNRS/IN2P3) European Gravitational Observatory

On behalf of the Virgo Collaboration, the LIGO Scientific Collaboration and the KAGRA Collaboration

ICHEP 2024, Prague – July 18th, 2024

VIR-0080B-24

G2400232

Outline

- Detecting gravitational waves with the LIGO-Virgo-KAGRA network of giant, ground-based, suspended interferometric detectors
- The path to the O4 run
 - 90 detections between 2015 and 2020 during the O1-O3 runs

- The O4a run
 - **GW230529**
- The ongoing O4b run
- Outlook

Gravitational waves (GW) in a nutshell

- One of the first predictions of general relativity (GR, 1916)
 - Accelerated masses induce perturbations of the fabric of the spacetime, propagating at the speed of light – and of gravity
- Traceless and transverse (tensor) waves
 - 2 polarizations in GR: «+» and «×»
 - Quadrupolar radiation
 - \rightarrow Deviation from axisymmetry to emit GW
- GW strain h
 - Dimensionless, scales like 1/distance
 - Differential length change: $h = \Delta L / L$
- Detectors directly sensitive to h
 - \rightarrow Small sensitivity gains can lead to large improvements in event rate
- Rough classification
 - Signal duration
 - Frequency range and evolution
 - Known/unknown waveform
 - Any/no counterpart (electromagnetic spectrum, neutrinos, etc.) expected

Detectable by the instruments

Gravitational wave spectrum

LIGO, Virgo, KAGRA 4

GW sources (rough) classification

- \rightarrow Drives the choice of the data analysis methods
 - Matched filtering when waveform known
 - Coherence methods otherwise

Detectors

• Gravitation very weak ↔ Spacetime extremely rigid

 \rightarrow Only GW sources from the cosmos can be powerful enough to be detected

- Sources very far away: GW signals received on Earth are extremely tiny
 - $h \approx 10^{-22} \Leftrightarrow \Delta L \approx 10^{-19} \text{ m}$

 \rightarrow Extremely sensitive detectors required

- Giant ground-based interferometric detectors
 - A passing GW distorts spacetime locally, thus changes the interference pattern
 → Signal at the interferometer output port
- Detectors non directional: see more or less the whole sky
 - → Network of instruments analyzing data jointly are much more powerful
 - \rightarrow Sky localization of the source

Example: the Advanced Virgo Plus detector

Detector sensitivity and BNS range

- Sensitivity: noise amplitude spectrum density [Unit: $1/\sqrt{Hz}$] vs. frequency
 - Complex curve full of features, summing up contributions from many noise sources

→ Useful (simplifying) figure of merit: the BNS range

 Averaged (sky and binary inclination) distance [Mpc] up to which a "typical" merging Binary Neutron Star system can be detected (signal-to-noise ratio of 8)

8

LVK: LIGO-Virgo-KAGRA collaboration

- LIGO
 - LIGO Labs: funded by NSF, operated by Caltech and MIT
 - \rightarrow Conceived and built the project
 - Advanced LIGO: USA + Germany + UK + Australia
 - \rightarrow Significant commitments and contributions
 - LIGO Scientific Collaboration (⊃ GEO Collaboration)
 - \rightarrow 1,600+ scientists
 - More info: <u>https://my.ligo.org/census.php</u>
- Virgo Collaboration
 - ~900 members from 150+ institutions
 - 17 countries mainly European
 - More info: <u>https://www.virgo-gw.eu/about/scientific-collaboration</u>
 - European Gravitational Observatory hosts the Virgo detector
 - \rightarrow Funded by France, Italy and The Netherlands
- KAGRA Collaboration
 - 400+ members from ~130 institutions
 - 17 countries/regions

More information: https://gwcenter.icrr.u-tokyo.ac.jp/en

LVK network of detectors

- A worldwide network of ground-based GW interferometric detectors
 - Each detector responsible of its own data taking
 - \rightarrow Global coordination
- Joint data analyses & publications
- GEO600 [Germany]
 - Astrowatch, R&D
- LIGO Hanford [WA, USA] LIGO Livingston [LA, USA]
 - Advanced detectors online since September 2015
 - LIGO India: planned for end of decade
- Advanced Virgo : since August 2017
- KAGRA [Japan]
 - Underground and cryogenic
- Gravitational Wave Open Science Center (GWOSC): <u>https://www.gw-openscience.org</u>

Of data taking periods and upgrades

- LVK is a meta-collaboration aiming at optimizing the global yield of the network
 - Joint strategy
 - \rightarrow Data taking periods:

Observing Runs (On) Past: n=1, 2, 3 Current: n=4 Future: n=5, etc.

 \rightarrow Upgrades: lead to (much) more detections during the next run

LVK catalog of GW transient detections

• Latest issue: GWTC-3, covering O1, O2 and O3 – Phys. Rev. X 13, 041039 (2023)

Note that the mass estimates shown here do not include uncertainties, which is why the final mass is sometimes larger than the sum of the primary and secondary masses. In actuality, the final mass is smaller than the primary plus the secondary mass.

The events listed here pass one of two thresholds for detection. They either have a probability of being astrophysical of at least 50%, or they pass a false alarm rate threshold of less than 1 per 3 years.

UNITS ARE SOLAR MASSES 1 SOLAR MASS = 1.989 x 10³⁰kg

ARC Centre of Excellence for Gravitational Wave Discovery

LVK dataflow

- From: A guide to LIGO-Virgo detector noise and extraction of transient gravitational-wave signals
 - B. P. Abbott et al., 2020 Class. Quantum Grav. 37 055002
- Detector Characterization SEARCHES & Data Quality Template Make Triggers Matching (with False Alarm Rates. Signal to Noise Ratio) • Event validation Whitening **Identified Signals** • Auxiliary & environmental sensors PARAMETER Different latencies ESTIMATION Online Whitening Interferometers Detector Offline h(t) Event Chararacterization Calibration Validation On-demand Data Quality Bavesian Analysis • Many monitoring levels Auxiliary Detector & Environmental Sensors Network CATALOG Instrument Performance Analyses 13

Low-latency alerts

- General Coordinates Network (GCN)
 - <u>https://gcn.nasa.gov</u>
- Real-time processing of LVK data
 - Dedicated data analysis pipelines searching for transient GW events
- Latency is the main challenge for the public alert
 - The lower, the better
- An alert must be informative for the astronomy community
- Automated alerts later found not to originate from the cosmos are retracted
- Central database: GraceDB
 - Gravitational wave candidate event DataBase
 - → Public portal: <u>https://gracedb.ligo.org/superevents/public/O4</u> [O4a]

data	Reconstruction h(t) pipelines	Information candidates enrichment	Vetting studies	Analyses
DetChar timescales	Online	Near real-time	Offline	
Corresponding latencies	Seconds	Minutes	Hours	Days Weeks Months

14

From O3 to O4

- Ambitious program of upgrades for all detectors in the network
 - Slowed down (at best) by the covid-19 pandemic
 - \rightarrow O3b stopped a month earlier and detectors shut down a few days later
 - \rightarrow O4 should have been over before the date it actually started! \otimes
- Manifold goals
 - Increase binary merger detection rate from ~1/5 days to ~1/2 days
 - Improve public alerts: latency + localization + classification
 - Improve SNR of detected GWs

 LIGO A+ project: improvements in various frequency bands to address dominant (limiting) noises • Virgo

First stage of a 2-step upgrade: Advanced Virgo +

- O3-O4 break: quantum noise + technical noises
- O4-O5: thermal noise

• KAGRA

- 2-week run with GEO600 in April 2020: "O3GK"
- Then about 1 year of repair and installations, followed by some commissioning to be ready for O4

- May $2023 \rightarrow$ January 2024
 - Followed by a commissioning break of a few weeks, before starting O4b
- Data taking by the two LIGO detectors only
 - As planned, KAGRA has taken data with a limited sensitivity for a few weeks, before moving back to commissioning with the goal of participating to the final part of O4b with a improved sensitivity
 - Virgo has decided to keep on commissioning, in order to work further on improving the sensitivity and the stability of the detector
 - Recycling cavities are only marginally stable:
 that makes the interferometer control difficult
 Plus some technical noises impacting the sensitivity
 - → After a few months, it was decided that Virgo would join O4b directly

• BNS range

• Public monitoring plots: <u>https://gwosc.org/detector_status/O4a</u>

• Number of significant alerts scales well with integrated V×T

• More distant sources are found

First O4a detection published: GW230529

- Single detector (LIGO Livingston) significant event
- A neutron star merging with a likely black hole
- Lower mass gap: dearth of 3-5 M_{\odot} compact objects in the Milky Way \rightarrow Separation between heaviest neutron stars and lightest black holes?

 \rightarrow Best-yet evidence of compact objects existing in the lower mass gap

- Reference: <u>arXiv</u> accepted for publication in ApJ Letters
- Data release: <u>https://gwosc.org/eventapi/html/O4_Discovery_Papers/GW230529_181500</u>

- April 2024 \rightarrow June 2025
 - 3-month break after O4a, including a 3-week preparatory engineering run
 - O4b recently extended from February to June 2025
 - More time for the preparation of the O4-O5 upgrades
 - \rightarrow The longest data taking period in the Advanced detectors era: 14 months!
- Virgo joining O4b from day 1 and for the whole run
 - Sensitivity similar to the O3b one BNS range ~ 55 Mpc
 - Impacted by some noise of unknown origin so far
 - Limitation due to the Virgo optical configuration
 - \rightarrow To be addressed between O4 and O5
 - Good stability overall: high duty cycle
- KAGRA status
 - 7.6-magnitude earthquake near the KAGRA site on January 1st
 - Most significant in the area in the past century
 - → No serious infrastructure damage (tunnel, facility, vacuum, cryogenics)
 - \rightarrow About 10 mirror suspension systems needed repair
 - Work in progress and mostly completed: commissioning to restart soon
 → Goal remains to join the run before the end of O4b (BNS range ~ 10 Mpc)

• Virgo data usage in low latency

■ Not for triggering: sensitivity gap + computing resources

- \square For sky localization: a third detector can significantly reduce the skymap size
 - \rightarrow Virgo data vet in low latency exactly like LIGO ones
 - Corresponding framework works fine and is integrated with LIGO
 - \rightarrow O4b overall strategy: maximize 3-detector uptime 0 detector downtime ~10%

חליום שלכום שלכם שלכם שלכם שלכם שלכם שלכים שלכ

- Requires continuous coordination within the LVK
 - In particular: align known, weekly recurring, downtimes
- → Joint LVK vetting of low-latency alerts since the beginning of O4: the Rapid Response Team (RRT)
 - 24/7 shift coverage
 - 3 regions covering 8 hours each
 - 3-tiered system
 - Level 0: shifters
 - Level 1: experts
 - Level 2: full team

- Single detector duty cycle: the example of Virgo
- Daily duty cycle histogram
 - Lower on Tuesdays: maintenance in the morning + commissioning in the evening

[LIGO maintenance]

Unknown: 0.00 %

Monthly duty cycles 1396796418 [2024-04-10 15:00:00+00:00 UTC] -> 1405238420 [2024-07-17 08:00:02+00:00 UTC]

• Network sensitivity

Data from the public website <u>online.igwn.org</u>

→ Alongside a live status of the LVK detectors

24

- Low-latency alerts
 - Number of candidates

O4b Significant Detection Candidates: 37 (42 Total - 5 Retracted)

O4b Low Significance Detection Candidates: **557** (Total)

Cumulative plot vs. number of days of data taking

- Virgo data available for 90% of the LIGO triggers
 - Triggers missed: Virgo maintenance or attempt to control again the detector
- Sky localization greatly improved in some cases
 - Example: <u>S240615dg</u>

 \rightarrow Statistical studies planned to assess the actual improvement

No counterpart identified for all events: real source locations unknown

Outlook

- Still ~11 months of data taking to complete the O4b run
 - KAGRA is recovering from the earthquake: goal remains to join at the end of O4b
- In the meantime, preparation of upgrades between O4 and O5
 - Major work foreseen at Virgo to install stable recycling cavities
 - \rightarrow While preserving its participation to at least part of the O5 run

LIGO, Virgo and KAGRA observing plans [monthly updates] https://observing.docs.ligo.org/plan

- Post-O5 projects being developed in LIGO (A#) and Virgo (V_nEXT)
 - At least a decade before 3rd generation detectors come online (CE & ET)
 - Test future technologies, train a new generation of scientists, bridge the gap between current (2nd generation) and future detectors, make more discoveries
- LIGO India will join the network
 - Possibly as early as the end of the decade

A typical O4b week

- High duty cycle: > 80%
- Expected downtime pattern: Monday, Tuesday, Thursday and Saturday

Weekly summary plot: 2024/06/23 00:00:00 UTC -> 2024/06/30 00:00:00 UTC -- S-events: 0 ADVOK, 0 ADVNO

GraceDB

GWOSC

• Gravitational Wave Open Science Center: <u>https://www.gw-openscience.org</u>

