The Radio Neutrino Observatory in Greenland

Status and Perspectives

42nd International Conference on High Energy Physics, Prague, 2024 July 18, 2024

<u>Philipp Windischhofer</u> on behalf of the RNO-G Collaboration University of Chicago

The high-energy landscape of our universe

The high-energy landscape of our universe

Radio neutrino detection

Use Greenlandic ice as detector medium

Ice is dense!

Good target material for weakly-interacting particles

Charged particles in shower → electric current

Shower front smaller than wavelength

→ Coherent emission

Ice is clean and cold!

Very transparent to electromagnetic radiation in the MHz - GHz band!

→ Attenuation length O(1 km)

 $f \sim 500 \,\mathrm{MHz} \leftrightarrow \lambda \sim 0.4 \,\mathrm{m}$

Expect strong signals at high energies, detectable over long distances

Philipp Windischhofer / RNO-G

RNO-G: array design

4	_	
c)	
L	ſ	٦
(J
Ç	2)
		-
(1
ſ		-

Ì

RNO-G: station design

Triangular station layout with downhole and surface antennas

Downhole: Horizontally- (Hpol) and vertically-polarized (Vpol) dipole antennas

Hole ≈ **100m deep** in **morehomogeneous** and **radio-quiet ice**

Polarization-sensitivity improves direction-finding

Surface: Upward- and downwardlooking *(directional!)* log-periodic dipole antennas *(LPDAs)*

Sensitivity to (down-going) **cosmic rays** → **veto**

RNO-G: station design

Fully-analog downhole signal chain

Philipp Windischhofer / RNO-G

RNO-G: station design

Beam-forming for radio trigger

Downhole-dipoles have **low antenna gain**

(Ø 28cm hole)

→ To be activated in deployed stations soon!

Drilling

Auger drill developed by British Antarctic Survey

Antenna

PAAL S

SOREL

most meaning www.

RND-G

000-240-2335

DAQ installation

Wind turbine installation

Calibration

Multi-component signal path:

Forward gain ↔ event energy scale

Group delay ↔ event localization

S-parameter characterization of all deployed components

Philipp Windischhofer / RNO-G

Simulation

RNO-G is an <u>array</u> built from autonomous stations

Data-taking status and first results

First deployment in summer 2021; seven stations currently integrating data

Data set for first neutrino search still blinded

A broadband radio array is a very versatile detector!

Data-taking status and first results

First deployment in summer 2021; seven stations currently integrating data

Observation of solar radio bursts in RNO-G

S. Hallmann, M. Mikhailova

arXiv:2404.14995

Data-taking status and first results

First deployment in summer 2021; seven stations currently integrating data

Cosmic ray air showers

Search for down-going signals in surface antennas

Full analysis / detector modeling work in progress

Building for the future

RNO-G array currently undergoing deployment at Summit Station, Greenland

Seven stations already taking data, 28 more firmly planned (and fully funded)

World-leading sensitivity to neutrinos around 1 EeV

35-station array starts probing optimistic **cosmogenic neutrino models** and hard **astrophysical component**

Exciting times ahead!

Philipp Windischhofer / RNO-G

Backup

RNO-G sensitivity to flaring sources

Ice at Summit

