

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

High Frequency Gravitational Wave Detection With SRF Cavities

Tom Krokotsch

with

Lars Fischer, Gudrid Moortgat-Pick, Krisztian Peters, Linus Pfeiffer, Andreas Ringwald and Marc Wenskat

Outline

- Why care about high frequency gravitational waves?
- RF cavities for gravitational wave detection
- Our project in Hamburg

Why Bother With High Frequency Gravitational Waves?

High Frequency Compact Binaries

Primordial Black Holes (PBHs)

- Often too **light** to originate from star
- Created by **density fluctuations** in the early universe
- Can solve **Dark Matter** Problem with Standard Model particles
- Hypothetical!

Assumes distance O(kpc) s.t. observing one merger per year is expected (see Muia 2022: 2205.02153)

Continuous HF Gravitational Waves

Black Hole Superradiance

- Created by **light bosonic cloud** (e.g. axions) around **spinning black holes** $\phi + \phi + BH \rightarrow h_{GW}$
- Frequency tied to black hole mass: $\omega_{GW} = 0.3 \text{ MHz} \frac{M_{\odot}}{M}$ $\Rightarrow \gtrsim 0.1 \text{ MHz} \text{ GWs}$ requires primordial BHs
- **Coherent** signal for many years
- Hypothetical!

Superradiance: New Frontiers in Black Hole Physics. Springer, 2020

* Same distance assumption as last slide + further assumptions about e.g. spin of black hole (see Berlin 2023: 2303.01518)

The Future of HFGWs: Cosmological Backgrounds

RF Cavities as 'Weber Bars'

How to Make the Experiment Work

Signal Power

 \rightarrow Cavity resonators with high Q

Thermal Noise & Thermal Vibrations → Cryogenic Temperatures

Vibrations

→ Suspension System & Isolation

Pump Mode

 \rightarrow Dedicated RF system

The MAGO Cavity

- Original idea developed & tested 'PACO'
 → Bernard et al. arXiv:0004031 (2000)
- Improved prototype 'MAGO' built in early 2000s
- → Ballantini et al. arXiv:0502054 (2005)
- Never treated and tested (until now)

18/07/2024

The MAGO Revival

- Renewed interest in MAGO cavity for *high* frequency GWs
 → Berlin et al. arXiv:2303.01518 (2023)
- Project now started in Hamburg & at Fermilab
- MAGO cavity has been tuned, treated and prepared for cold testing
- Design of RF system, cryostat & suspension system is under way
- Goal is to have a first 'physics run' with the MAGO prototype
- In the future: design our own cavity for improved sensitivity

Takeaways

- High frequency GWs are messengers of new physics
- RF cavities are uniquely suited tools to detect them
- The MAGO prototype cavity will search for GWs with 10 100 kHz
- A future experimental design will hold even more potential

Backup

RF Cavities as Graviton-Photon Converters

Static B Field (c.f. ADMX, HAYSTAC)

Up-Conversion of Pump Mode

Noise From The Pump Mode Suppression → Exploit the mode symmetries

Future Sensitivity To Predicted Sources

PBH Mergers: Strongly Overcouple

Superradiance: Critical Coupling

