Reconstruction of cosmological initial conditions with sequential simulation-based inference

Oleg Savchenko

Work with: Guillermo Franco Abellán, Florian List, Noemi Anau Montel, Christoph Weniger

Large scale structure

06 08 Redshift z

https://mapoftheuniverse.net/

SDSS collaboration

Next decade

Cosmological simulations

Types:

- LPT
- COLA
- Particle mesh

- N-body
- Hydrodynamical

https://quijote-simulations.readthedocs.io/ https://camels.readthedocs.io/

How to analyse LSS data?

Figure 11: The triangle plot for cosmological and nuisance parameters of four independent BOSS datasets.

Classic approach:

- Come up with some summary statistic s(data)
- Develop theory predictions for **s**
- Construct an analytic likelihood model (usually Gaussian)
- Use Bayes theorem and run MCMC:

$$p(oldsymbol{z}|oldsymbol{x}) = rac{p(oldsymbol{x}|oldsymbol{z})}{p(oldsymbol{x})}p(oldsymbol{z}).$$

Field-level inference

Leclercq+, 2103.04158

The whole field contains much more information than some summary like a power spectrum!

$$\langle \delta_{\rm m}(\mathbf{k}) \delta_{\rm m}(\mathbf{k}') \rangle = (2\pi)^3 \delta_{\rm D}^3(\mathbf{k} + \mathbf{k}') P_{\rm mm}(k)$$

Jasche+, 1806.11117 Reconstructing fields Posterior mean predicted y_2 0.006 0.004 **Porqueres**+, 2304.04785 0.002 0.000 -0.15 $\Delta H/H_0$ 0.15 Mass estimation and evolution -0.002**Hubble parameter** -0.004uncertainties history, velocity fields, BAO, -0.006 arcmin f_{NL}, 21 cm, weak lensing... Shear $ho_ u/ar ho_ u$ 180° Elbers+, 1.15 2307.03191 Hutschenreuter+, 1803.02629 $_r$ [Mpc] Magnetic field

Neutrino field

Initial conditions reconstruction

Very early universe had very simple properties!

→ feasible way to do field reconstruction is to infer these initial conditions

$$Pig(oldsymbol{\delta}^{ ext{IC}} \mid ig\{N_i^gig\}ig) = rac{Pig(oldsymbol{\delta}^{ ext{IC}}ig)Pig(ig\{N_i^gig\}\mid G_iig(oldsymbol{\delta}^{ ext{IC}}ig)ig)}{Pig(ig\{N_i^gig\}ig)}$$

 $oldsymbol{\delta}^{ ext{IC}}$ – initial density field $ig\{N_i^gig\}$ – galaxy catalog data

Gaussian initial conditions

Bayesian Origin Reconstruction from Galaxies (BORG)

Samples produced with Hamiltonian Monte Carlo

- Most developed method so far
- Explicit likelihood
- Requires gradients from the simulator
- Takes hours to produce a single sample
- Not amortized

ML approaches

• **Point estimates**: train a neural net to give single deterministic prediction (MAP estimation)

Flöss+, 2305.07018

Diffusion models

- Train a network to approximate the score: $\nabla_x \log p(x|y)$
- Generate samples via reverse-diffusion process.

24 hrs of training on 4 80GB NVIDIA A100 GPU's

Figure 2. Left: The density field at redshift z = 0 for the fiducial Planck cosmology. Center: Initial conditions sampled from the posterior p(x|y). Right: The true initial conditions. All three density fields span a $1000 \times 1000 \times 125 (h^{-1}\text{Mpc})^3$ region averaged over the third axis. This example demonstrates the capability of score-based generative models to sample highly detailed initial conditions consistent with the ground truth. See Figure 3 for quantification of uncertainty.

Our setting

Training data: **2000** 128³ (1 Gpc/h)³ Simbelmyne or Quijote simulations

128³ resolution: ~million-dimensional parameter space!

- Want to explore the full posterior, not only get point estimates
- Want to keep things as simple as possible
- Want to be able to do things sequentially: need to estimate the likelihood:

$$p(\boldsymbol{z}|\boldsymbol{x}) \propto \exp\left\{-\frac{1}{2}(\boldsymbol{z} - \hat{\boldsymbol{z}}_{\boldsymbol{\theta}}(\boldsymbol{x}))^T \boldsymbol{Q}_{\boldsymbol{\theta}}^L(\boldsymbol{z} - \hat{\boldsymbol{z}}_{\boldsymbol{\theta}}(\boldsymbol{x})) - \frac{1}{2} \boldsymbol{z}^T \boldsymbol{Q}^P \boldsymbol{z}\right\}$$

 Tried different approaches: autoregressive modelling, sliced score matching...

Apply a U-Net to estimate μ_{MLE}

Our approach

Training data

map2map U-Net

Jamieson+, 2206.04594

Train the model with a simple MAP loss function

$$\log \mathcal{L}(\vec{\mu}, \boldsymbol{Q}) = \mathbb{E}_{\vec{x} \sim p(\vec{x})} \left[\frac{1}{2} (\vec{x}_{(i)} - \vec{\mu})^T \boldsymbol{Q} (\vec{x}_{(i)} - \vec{\mu}) - \frac{1}{2} \operatorname{tr}(\log \boldsymbol{Q}) \right]$$

Q matrix diagonal in Fourier space, depends only on |k|

Super-fast sampling from a Gaussian

Learn correlation matrix and embedding network simultaneously

Sequential inference

- Our parameter space is too vast to explore
- Want to 'zoom in' into it and obtain precise results with a low number of simulations

Learning with high-precision

Slide credit:

N. Angu Montel

Results

1 hour of training

1 GPU

NVIDIA 40GB A100

(1 Gpc/h)³ volume

128³ voxels

Summary statistics comparison

1-2% agreement in the power spectrum

Coverage test shows that samples follow the correct distribution

Summary

- Reconstruction of cosmological initial conditions is an important problem that allows to analise LSS data in the fullest way
- Methods like BORG achieve the goal, but are very slow, require gradients, run for months on supercomputers...
- Most ML approaches do point estimates, not explore the full posterior
- Our approach does this full exploration, is easy to train and produces samples in a super-fast way; it allows to turn any point estimator into a sampler
- The method is flexible and allows to do inference in an effective sequential way, with many applications in the future!