

Federal Ministry of Education and Research

Ultra-high energy cosmic ray propagation in a structured Universe Anisotropy study above 8 EeV

ICHEP 2024, Astroparticle Physics and Cosmology, Prague, 20 July 2024 **Simone Rossoni**¹ and Günter Sigl¹ simone.rossoni@desy.de

1- II. Institute for Theoretical Physics, Universität Hamburg

Constrained MHD simulations: structured Universe

CR/Propa CRPropa simulations

Results: deflection, sky map, anisotropies

Simone Rossoni

Ultra-high energy cosmic ray propagation in a structured Universe

Constrained MHD simulations

Constrained baryonic distribution at z=60 in a comoving volume of $(500 Mpc)^3$ (ENZO)

power law.

density.

The ENZO Collaboration: G.L.Bryan et al, ApJS (2013) J.G.Source et al, Mon. Not. R. Astron. Soc. (2015) S.Hackstein et al, Mon. Not. R. Astron. Soc. (2017)

Simone Rossoni

Primordial2R: EGMF seeded at z=60 uniform along each axis or described by a spectral

AstrophysicalR: EGMF produced by magnetic feedback within halos with high number

UHECR interactions

Simone Rossoni

CRPropa simulations

R.A. Batista et al, JCAP (2022)

Simone Rossoni

Ultra-high energy cosmic ray propagation in a structured Universe

CRPropa simulations

R.A. Batista et al, JCAP (2022)

Simone Rossoni

Correction for the finite size of the observer

Weighting of the simulations with combined fit of energy spectrum and mass composition

	baseline	JF12 reg	homogeneous
sources	LSS	LSS	homogenous
HIM	EPOS-LHC	EPOS-LHC	EPOS-LHC
cutoff $f_{\rm cut}$	b.e.	b.e.	b.e.
GMF	reg+rand	reg only	reg+rand
γ	-1.17	-1.23	-1.34
$\log_{10}R_{\rm cut}$	18.2	18.2	18.2
I_{H}	0.01	0.02	0.02
I_{He}	0.27	0.27	0.24
$I_{ m N}$	0.57	0.56	0.58
$I_{\rm Si}$	0.12	0.12	0.13
$I_{\rm Fe}$	0.01	0.04	0.04
$ u_{X_{\mathrm{max}}}/\sigma$	-0.88	-0.93	-0.95
$\ln \mathcal{L}_E$	-92.3	-91.1	-92.4
$\ln \mathcal{L}_{X_{\max}}$	-228.7	-229.2	-229.3
$\ln \mathcal{L}_d$	12.1	11.8	-8.5
$\ln \mathcal{L}_{\rm syst}$	-0.4	-0.4	-0.5
$\ln \mathcal{L}_{\rm sum}$	-309.3	-308.9	-330.6

 $Q_A(E) \propto a_A \left(\frac{E}{E_0}\right)' f_{cut} \left(\frac{E}{Z_A R_{cut}}\right)$

T. Bister & G. Farrar, Astrophys.J. (2024)

Nearest source luminosity 10 times greater

Magnetic deflection and horizon

Simone Rossoni

180

160

140

- 100 (θ (deg) - 80

- 60

40

- 20

180 160 140

120 - 100 (deg)

Ø 08

Angle distribution between injected momentum and observed momentum of detected particles

Magnetic horizon: suppression of the maximum source distance

Arrival direction distribution

Effective number of particles with weight factor ω_i given by

$$\mathcal{N} = \sum_{i=1}^{N} \omega_i$$

If N_p is the number of pixels in the sky with angular size $\Delta \Omega$

$$\phi(\hat{n}) = \frac{1}{\mathcal{N}} \sum_{i=1}^{N_p} \mathcal{N}_i \cdot \Delta(\hat{n} - \hat{p}_i)$$

Effective number of particles in the pixel i \mathcal{N}_i and

$$\Delta(\hat{n} - \hat{p}_i) = \frac{1}{\Delta\Omega_i} \quad , \quad for \ \hat{n} \ in \ the \ pixel \ \hat{p}_i$$

Fractional deviation of arrival direction distribution

$$\delta_{\phi}(\hat{n}) = \frac{\phi(\hat{n}) - \phi_{iso}}{\phi_{iso}} \quad , \quad \phi_{iso} = \frac{1}{4\pi}$$

Simone Rossoni

Ultra-high energy cosmic ray propagation in a structured Universe

Spherical decomposition of the sky map distribution

$$\phi(\hat{n}) = \sum_{l=0}^{+\infty} \sum_{m=-l}^{l} a_{lm} Y_{ml}(\hat{n})$$

$$a_{lm} = \int d\hat{n} \,\phi(\hat{n}) \, Y^*_{lm}(\hat{n}) \quad \Rightarrow \quad C_l = \frac{1}{2l+1} \sum_{m=-l}^l \left| a_{lm} \right|^2$$

Expected angular power spectrum under isotropic assumption

$$\left\langle C_{l} \right\rangle_{\phi_{iso}} = \frac{1}{2l+1} \frac{\Delta \Omega}{4\pi} \frac{\sum_{j=1}^{N} \omega_{j}^{2}}{\mathcal{N}^{2}} \sum_{m=-l}^{l} \sum_{i=1}^{N_{p}} \left| f_{lm,i} \right|^{2}$$

where

$$f_{lm,i} = \frac{1}{\Delta \Omega_i} \int_{\Delta \Omega_i} d\hat{n} Y_{lm}(\hat{n})$$

Arrival direction distribution

Simone Rossoni

Lensed arrival direction distribution

Ultra-high energy cosmic ray propagation in a structured Universe

Simone Rossoni

Dipole and quadrupole

Simone Rossoni

Ultra-high energy cosmic ray propagation in a structured Universe

	Dipole	Quadrupole
No EGMF	6%	32%
AstrophysicalR	9%	27%
Primordial2R	9.5%	27%
Statistical	21%	21%
Auger	(6.5±0.1)%	(1.5±1.6)%

R. de Almeida, PoS ICRC (2021)

Results

Backup slides

Backup slides

Simone Rossoni

Ultra-high energy cosmic ray propagation in a structured Universe

Spectrum and composition

Simone Rossoni

Ultra-high energy cosmic ray propagation in a structured Universe

Spectrum and composition homogeneous

Simone Rossoni

Ultra-high energy cosmic ray propagation in a structured Universe

Magnetic deflection homogeneous

Simone Rossoni

Ultra-high energy cosmic ray propagation in a structured Universe

Arrival direction distribution homogeneous

Ultra-high energy cosmic ray propagation in a structured Universe

Simone Rossoni

Arrival direction distribution (lensed)

Ultra-high energy cosmic ray propagation in a structured Universe

Simone Rossoni

Angular power spectrum homogeneous

Simone Rossoni

Ultra-high energy cosmic ray propagation in a structured Universe

