

Supermassive Black Holes from PeV to ZeVatrons

Arman Tursunov

Max Planck Institute for Radio Astronomy, Bonn, Germany Silesian University in Opava, Czech Republic

> **ICHEP 2024** 17–21 July — Prague — Czech Republic

Black hole as a multimessenger & multiwavelegths source

credit: A.V.Plavin, Y.Y.Kovalev, Yu.A.Kovalev, S.V.Troitsky, Directional Association of TeV to PeV Astrophysical Neutrinos with Radio Blazars, The Astrophysical Journal, Volume 908, Issue 2, id.157 (2021) + my small update

Black holes are largest energy reservoirs in Universe

Kerr black hole hypothesis (*M & a*)

Entropy of black hole ~ to the event horizon area:

$$\begin{split} S_{\rm BH} &= \frac{c^3}{4G\hbar} A_H \\ E_{\rm irr} &= \sqrt{\frac{S_H \hbar c^5}{4\pi G k_{\rm B}}} \equiv \sqrt{\frac{A_H}{16\pi G^2}} c^4 = \frac{M c^2}{\sqrt{2}} \left[1 + \sqrt{1 - \left(\frac{a}{M}\right)^2} \right]^{\frac{1}{2}} \\ g_{tt} &= \frac{2mr}{r^2 + a^2 \cos^2 \theta} - 1 \\ \end{split}$$
Inside the ergosphere g_{tt} changes its sign

$$E = -p_t = -mu_t = -mg_{tt}u^t - mg_{t\phi}u^{\phi}$$
$$L = p_{\phi} = mu_{\phi} = mg_{\phi\phi}u^{\phi} + mg_{\phi t}u^t$$

Black hole area non-decrease states that up to 29% of BH's energy is rotational and available for extraction. For typical rotating SMBH of 10^9 solar mass the available energy is ~ 10^{74} eV ~ 10^{55} Joules

55 years of energy extraction from black holes

Electric Penrose process (Tursunov et al PRD 2022) – efficiency is limited to $< 10^6$

- Penrose (1969), Bardeen etal. & Wald (1972, 1974): Efficiency < 0.21
- Piran et al. (1975/77) Collisional Penrose process.
- Ruffini & Wilson (1975) charge separation in accreting plasma
 - Blandford & Znajek (1977) & MHD simulations Efficiency a few
- Wagh et al. (1985) Magnetic Penrose process MPP for the first time efficiency can exceed 2
 - Many other versions of the above processes with efficiencies of a few
- Ultra-efficient MPP (Tursunov et al. ApJ 2020) efficiency > 10^{10} for protons in case of SMBHs
 - Radiative Penrose process (Kolos, Tursunov, Stuchlik PRD, 21) first mechanism utilising radiating particles

Black holes are weakly magnetized

- Magnetic fields are indeed present around BHs e.g. due to dynamics of plasma disk or companion star
- MF of SgrA* ~ 10G. Characteristic MF for $10^9 M_{\odot}$ is 10^4 G; for $10M_{\odot}$ can exceed 10^8 G.

- Cannot neglect **MF effects** on the charged matter

$$\frac{F_{\text{lorentz}}}{F_{\text{grav.}}} = \frac{eBGM}{m_p c^4} \approx 10^{11} \left(\frac{B}{10^4}\right)$$

• This ratio for our Galactic center BH $\sim 10^6$

Ionization near black hole: beta decay

the following reactions:

 $p + \bar{v}_e \rightarrow n + e^+$

$$n^0 \rightarrow p^+ + W^- \rightarrow p^+ + e^- + \bar{\nu}_e$$

Neutron beta-decay in ergosphere in the presence of magnetic field. Electron falls into black hole with the negative energy, protons escape.

In the hot and dense torus, with temperature of $\sim 10^{11}$ K and density $> 10^{10}$ g·cm⁻³, neutrinos are efficiently produced. The main reactions that lead to their emission are the electron/positron capture on nucleons, as well as the neutron decay. Their nuclear equilibrium is described by

$$\rightarrow n + \nu_{e}$$

Magnetic field

 $p + e^- + \bar{v}_e \rightarrow n$ A. Janiuk et al, Galaxies 5, 15 (2017) 1

Energy of protons: acceleration of cosmic rays

Energy of protons: acceleration of cosmic rays

GZK cutoff

 $p + \gamma_{\rm CMB} \rightarrow p + \pi^0$,

 $p + \gamma_{\rm CM}$

Collision of UHERCR proton with CMB produces 200 MeV in center-of-mass, which is the peak for photo-pion production

left: panorama of the interactions of possible cosmic primaries with the CMB; right: and mean energy of protons as a function of propagation distance through the CMB, based on GZK cutoff.

$$_{\rm B} \to n + \pi^+$$

Energy loss due to synchrotron radiation

Propagation of proton in equipartition magnetic field of order $10^{-5}G$

Neutron stars can be ruled out due to large synchrotron loses of protons in strong MF of NSs.

B (Gauss)	τ_e (s)	$ au_p$ (s)	$ au_{\mathrm{Fe}}(\mathrm{s})$
10 ¹²	10 ⁻¹⁶	10 ⁻⁶	10 ⁻⁵
108	10^{-8}	10^{2}	10 ³
104	1	10 ¹⁰	10^{11}
1	108	10 ¹⁸	10 ¹⁹
10^{-4}	10 ¹⁶	10 ²⁶	10 ²⁷

Timescale of collisions of particles in plasma:

$$(T = 10^8 \text{K}, n = 10^{14} \text{cm}^{-3})$$

 $6.4 \times 10^{-4} \text{s}, \tau_{ei} \approx 4.5 \times 10^{-4} \text{s}, \tau_{ii} \approx 4 \times 10^{-2} \text{s}.$

Selected nearby SMBH candidates

SMBH	$\log(M/M_{\odot})$	Spin a	d (Mpc)	$\log(B/1\mathrm{G})$	$\log(E_{p+}^{\mathrm{mean}}/1\mathrm{eV})$
Sgr A*	6.63	0.5	0.008	2	15.64
NGC 1052	8.19	$\lesssim 1$	19	4.8	20.11
NGC 1068 / M77	6.9	$\lesssim 1$	15	4.54	18.56
NGC 1365	6.3	$\lesssim 1$	17.2	4.70	18.12
NGC 2273	6.9	0.97	29	4.58	18.41
NGC 2787	7.6	$\lesssim 1$	8	3.73	18.45
NGC 3079	6.4	$\lesssim 1$	22	4.06	17.58
NGC 3516	7.4	0.64	42	4.88	19.37
NGC 3783	7.5	0.98	41	4.15	18.77
NGC 3998	8.9	0.54	15	3.58	19.52
NGC 4151	7.8	0.84	14	4.6	19.53
NGC 4258 / M106	7.6	0.38	8	4.14	18.65
NGC 4261	8.7	$\lesssim 1$	32	3.51	19.33
NGC 4374 / M84	9	0.98	20	3	19.12
NGC 4388	6.9	0.51	18	5.19	19.11
NGC 4486 / M87	9.7	$\lesssim 1$	17	2.84	19.66
NGC 4579	8	0.82	18	4.11	19.23
NGC 4594	8.8	0.6	11	3.18	19.05
NGC 5033	7.2	0.68	20	4.47	18.77
NGC 5194 / M51	6.0	0.57	8	4.51	17.57
MCG-6-30-15	7.3	0.98	33	4.74	19.16
NGC 5548	7.8	0.58	75	4.48	19.34
NGC 6251	8.8	$\lesssim 1$	102	3.70	19.62
NGC 6500	8.6	$\lesssim 1$	43	3.60	19.32
IC 1459	9.4	$\lesssim 1$	31	3.20	19.72

Selected nearby SMBH candidates

in a	d (Mpc)	Log(B/1G)	$\log(E_{p+}^{\mathrm{mean}}/1\mathrm{eV})$	
.5	0.008	2	15.64	
${\leq}1$	19	4.8	20.11	
${}_{51}$	15	4.54	18.56	
			18.41	
			18.45	
			17.58	
			19.37	
V	2nd Knee		18.77	
T* Por		00	19.52	
			19.53	
		Ankle	18.65	
			• 19.33	
			19.12	
	· ++		19.11	
			19.66	
			19.23	
		· · 	19.05	
			18.77	
10	$17 10^{18}$	10^{19} 10^{20}	17.57	
[eV]			19.16	
58	75	4.48	19.34	
${\leq}1$	102	3.70	19.62	
${\leq}1$	43	3.60	19.32	
${}_{51}$	31	3.20	19.72	

Particle acceleration in various radioactive decay modes

Decay Mode	Generic Equation	Esc. p.	Efficiency η _{max}	Regime of MPP
α decay	${}^{A}_{Z} X^{0} \rightarrow {}^{A-4}_{Z-2} Y^{2-} + {}^{4}_{2} \alpha^{2+}$	Y	<0	_
		α	$1.2 \times 10^6 / A$	ultra
	$^{A}_{Z}X^{+} \rightarrow ^{A-4}_{Z-2}Y^{-} + ^{4}_{2}lpha^{2+}$	Y	<0	_
		α	${\sim}1$	moderate
	${}^{A}_{Z}X^{-} \rightarrow {}^{A-4}_{Z-2}Y^{3-} + {}^{4}_{2}\alpha^{2+}$	Y	${\sim}2$	moderate
		α	< 0	-
β^- decay	$^{A}_{Z}X^{0} \rightarrow {}^{A}_{Z+1}Y^{+} + e^{-} + \bar{\nu}$	Y	$6.1 \times 10^5 / A$	ultra
		e^-	<0	_
		$\bar{\nu}$	0.06	low
β^+ decay	${}^{A}_{Z}X^{+} \rightarrow {}^{A}_{Z-1}Y^{0} + e^{+} + \nu$	Y	<0	
		e^+	${\sim}0$	low/-
		ν	<0	_
γ emission	$^{A}_{Z} X^{0} \rightarrow ^{A}_{Z} X^{\prime 0} + ^{0}_{0} \gamma^{0}$	X′	0.06	low
		γ	0.06	low
Pair production	$\gamma^0 ightarrow e^- + e^+$	<i>e</i> ⁻	<0	
		e^+	$5.5\times 10^8/(2m_ec^2)$	ultra

Tursunov, Dadhich, 2019

Spectrum of UHECR acceleration model

model: available energy \checkmark acceleration mechanism \checkmark energy spectrum \times

. . .

Can we observationally distinguish particle acceleration by black hole energy extraction?

Motion of radiating charged particles

Kolos, Tursunov, Stuchlik, PRD 2021 & Tursunov, et al. ApJ 2018.

Radiation inside the ergosphere: energy extraction

Kolos, Tursunov, Stuchlik, PRD 2021 & Tursunov, et al. ApJ 2018.

Can we detect black hole energy extraction?

Event Horizon Telescope Image of M87

Can we detect black hole energy extraction?

Ergo ring?

Future ngEHT may resolve internal ring structures