Inflation and Higgs Phenomenology in a Model Unifying the DFSZ Axion with the Majoron

- Motivation
- Model under study
- Phenomenology
- Conclusions

Gudrid Moortgat-Pick in collaboration with Juhi Dutta, Michael Matlis, Andreas Ringwald

Motivation

Open Questions

Dark Matter (DM)

Only 4.6% 'known' of Universe

- about 24% Dark Matter
- about 71.4% Dark Energy
- Hierarchy problem
- Grand Unification
- No Strong CP-violation
- Neutrino Masses
- Baryon-Antibaryon Asymmetry
- Inflationary period before thermal radiation

Extended two Higgs doublet models

Status LHC:

- one Higgs particle discoveres in 2012
 - strongly consistent with Standard Model (SM) predictions
- Few excesses around
 - not yet confirmed signals for new physics
- let's concentrate on SM with extended scalar and singlet sectors
- SM with gauge singlet scalars: natural DM candidates
 - strong constraints from direct detection searches
 - suitable for extended Higgs sectors with heavy Higgs portal to dark sector
 - extended SMASH (SM+3 singlet v_R + axion+exotic quark) models
- Aside: extra singlets allow to accommodate matter-antimatter asymmetry, inflation and neutrino masses

Model: 2hdSMASH

• 2hdSMASH= U(1)_{PQ}-sym. 2 Higgs Doublets

Volkas, Davies, Joshi '88 Clarke, Volkas '16 Espriu, Mescia, Renau '15

- + 1 complex singlet scalar S
- + 3 singlet Majorana v_R
- This model solves:
 - Strong CP via PQ mechanism
 - Dark matter via axion
 - Neutrino masses via seesaw
 - Baryon Asymmetry via leptogenesis
 - Inflationary phase via Higgs portals
 - here: combine inflationary constraints with Higgs phenomenology

The scalar potential

$$V(\Phi_{1}, \Phi_{2}, S) = M_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + M_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} + M_{SS}^{2} S^{*} S$$

$$+ \frac{\lambda_{1}}{2} \left(\Phi_{1}^{\dagger} \Phi_{1} \right)^{2} + \frac{\lambda_{2}}{2} \left(\Phi_{2}^{\dagger} \Phi_{2} \right)^{2} + \frac{\lambda_{S}}{2} \left(S^{*} S \right)^{2}$$

$$+ \lambda_{3} \left(\Phi_{1}^{\dagger} \Phi_{1} \right) \left(\Phi_{2}^{\dagger} \Phi_{2} \right) + \lambda_{4} \left(\Phi_{1}^{\dagger} \Phi_{2} \right) \left(\Phi_{2}^{\dagger} \Phi_{1} \right)$$

$$+ \frac{\lambda_{1S}}{2} \left(\Phi_{1}^{\dagger} \Phi_{1} \right) \left(S^{*} S \right) + \frac{\lambda_{2S}}{2} \left(\Phi_{2}^{\dagger} \Phi_{2} \right) \left(S^{*} S \right)$$

$$- \frac{\lambda_{12S}}{2} \left(\Phi_{2}^{\dagger} \Phi_{1} S^{2} + h.c. \right) ,$$

$$\Phi_i = \begin{pmatrix} \phi_i^\pm \\ \frac{1}{\sqrt{2}} (v_i + H_i + i A_i) \end{pmatrix} \quad \text{with } \sqrt{v_1^2 + v_2^2} \equiv v \simeq 246 \, \text{GeV} \quad \text{and} \quad S = \frac{1}{\sqrt{2}} (v_S + H_S + i A_S) \quad \text{with} \quad v_S \gg v$$

→Portal couplings important for neutrino masses and inflation

$$-\mathcal{L}_{Y} = Y_{u}\overline{q_{L}}\widetilde{\Phi}_{2}u_{R} + Y_{d}\overline{q_{L}}\Phi_{1}d_{R} + Y_{e}\overline{I_{L}}\Phi_{1}e_{R} + Y_{\nu}\overline{I_{L}}\widetilde{\Phi}_{1}N_{R} + \frac{1}{2}y_{N}\overline{(N_{R})^{c}}SN_{R} + \text{h.c.}$$

Scalar particle sector

- 10 d.o.f leading to 7 scalar particles after EWSB
 - charged Higgs

$$m_{H^\pm}^2=rac{1}{2}\left(rac{\left(t_eta^2+1
ight)\lambda_{12S}}{t_eta}-rac{\lambda_4 v^2}{v_S^2}
ight)\,v_S^2$$

- CP-odd scalars: axion = Nambu-Goldstone boson, mass via mixing with π^0

$$m_a \simeq \frac{\sqrt{z}}{1+z} \frac{m_\pi f_\pi}{f_a} \simeq 0.57 \,\mathrm{meV} \left(\frac{10^{10} \,\mathrm{GeV}}{f_a}\right)$$

- with axion decay constant: $f_a = rac{\sqrt{v_S^2 + 4rac{v_1^2v_2^2}{v^2}}}{6}$
- one more CP-odd A: $m_A^2=rac{2\lambda_{12S}}{1+t_eta^2}\left(rac{\left(1+t_eta^2
 ight)^2}{4t_eta}+rac{v^2}{v_S^2}t_eta
 ight)\,v_S^2$ with $\lambda_{12S} \!\!\geq \!\! 0$ ('no tachyions')
- and 3 CP-even Higgs h, H and S

Constraints I

- Theoretical Constraints:
 - Higgs potential boundedness from below (BFB): guarantees that potential
 in all field directions for large field values
 - constraints for all λ's, in particular:

$$\lambda_{1S} > 0, \qquad \lambda_{2S} > 0, \qquad \lambda_{1S}\lambda_{2S} - \lambda_{12S}^2 > 0$$

• perturbative unitarity: bounds for all λ 's, in particular:

$$0.28 \lesssim \tan \beta \lesssim 140$$

- astrophysical/cosmological constraints: v/v_S ≪1
 - very light axion ma~1/v_S, mh=125~v and mH,A,H[±],S ~v_S
- Experimental Constraints:
 - all bounds from LEP, LHC... (HiggsTools),astrophysical (PLANCK/BICEP)

Inflation in 2hdSMASH

2hdSMASH embeds chaotic inflation:

- offers plateau-like scalar potential at high field values
- hosts slow-roll regime for the fields
- automatic feature since Φ_1 , Φ_2 , $S \sim$ non-minimally coupled to Ricci R:

$$S_{
m 2hdSMASH} \supset -\int d^4x \sqrt{-g} \left(rac{M^2}{2} + \xi_1 \left|\Phi_1
ight|^2 + \xi_2 \left|\Phi_2
ight|^2 + \xi_S \left|S
ight|^2
ight) R_{
m S}$$

- Jordan to Einstein frame transformation: quartic potential ~ asymp. flat&convex

$$\begin{split} \tilde{V}_{\text{quartic}}(h_1, h_2, s, \tilde{\theta}_1) \\ &= \frac{\lambda_1 h_1^4 + \lambda_2 h_2^4 + \lambda_S s^4 + 2 \left(\lambda_{34} h_1^2 h_2^2 + \lambda_{1S} h_1^2 s^2 + \lambda_{2S} h_2^2 s^2 - 2 \lambda_{12S} h_1 h_2 s^2 \cos(\tilde{\theta})\right)}{8 \left(1 + \frac{\xi_1 h_1^2 + \xi_2 h_2^2 + \xi_S s^2}{M_{\text{P}}^2}\right)^2} \end{split}$$

Potential and directions can be parametrized by two angles (θ,γ)

$$J\left(\vartheta,\gamma\right) = \left(\frac{\partial \tilde{V}_{\text{quartic}}(\vartheta,\gamma)}{\partial \vartheta} \ \frac{\partial \tilde{V}_{\text{quartic}}(\vartheta,\gamma)}{\partial \gamma}\right)^2 \qquad \qquad \gamma_{0,i} = \begin{cases} \gamma_{\text{THI}} = \frac{\pi}{2} \\ \gamma_{\text{PQI}} = 0 \\ \gamma_{\text{PQTHI}} = \gamma_{\text{PQTHI}}(\vartheta,\gamma) \end{cases}$$
ICHEP@Prague, July 2024

Inflationary Directions

inflation along	Potential minimized at	Inflationary conditions	Einstein frame slow roll potential	
s h ₁	$\gamma_0 = \arctan\left(\sqrt{-rac{\lambda_{1S}}{\lambda_1}} ight)$ $artheta_0 = 0$	$\kappa_{s1} \geq 0$, $\kappa_{s2} \leq 0$ $\kappa_{1s} \leq 0$, $\kappa_{2s} \geq 0$	$rac{\lambda_{sh_1}}{8}s^4\left(1+\xi_Srac{s^2}{M_P^2} ight)^{-2}$	
s h ₂	$\gamma_0=rctan\left(\sqrt{-rac{\lambda_{2S}}{\lambda_2}} ight)$ $artheta_0=rac{\pi}{2}$	$\kappa_{s1} \leq 0$, $\kappa_{s2} \geq 0$ $\kappa_{1s} \geq 0$, $\kappa_{2s} \leq 0$	$\frac{\lambda_{\mathit{sh}_2}}{8} s^4 \left(1 + \xi_S \frac{s^2}{M_P^2}\right)^{-2}$	
s h ₁₂	$\begin{split} \gamma_0 &= \arctan\left(\sqrt{-\frac{\kappa_{s2} + \kappa_{s2}}{\lambda_1 \lambda_2 - \lambda_{34}^2}}\right) \\ \vartheta_0 &= \arctan\left(\sqrt{\frac{\kappa_{s1}}{\kappa_{s2}}}\right) \end{split}$	$\kappa_{s1} \leq 0$, $\kappa_{s2} \leq 0$ $\kappa_{1s} \leq 0$, $\kappa_{2s} \leq 0$	$rac{\lambda_{sh_{12}}}{8}s^4\left(1+\xi_2rac{s^2}{M_P^2} ight)^{-2}$	
s	$\gamma_0=0$ $artheta_0=\left\{0,rac{\pi}{2} ight\}$	$\kappa_{1s} \geq 0$, $\kappa_{2s} \geq 0$ $\forall \; \lambda_{1S,2S} \ll \lambda_{S}$	$rac{\lambda_{\mathcal{S}}}{8}s^4\left(1+\xi_{\mathcal{S}}rac{s^2}{M_p^2} ight)^{-2}$	

Table: Conditions and characteristics for PQI and PQTHI, i.e. s- and $sh_{1,2,12}$ -inflation, with $\xi_S \gg \xi_{1,2}$.

Sign of portal couplings essential in deciding inflationary direction.

M.Matlis, DESY-THESIS-2022-022

Inflationionary dynamics (Constraints II)

- Further constraints on portal couplings/parameters:
 - use inflationary parameters as spectral tilt n_s and tensor-to-scalar ratio r

$$4.5 \times 10^{-13} \lesssim \tilde{\lambda}_S \lesssim 8 \times 10^{-10}$$

 $8 \times 10^{-3} \lesssim \xi_S \lesssim 1$

Stability constraints:

From stability of λ_S

$$\begin{vmatrix} \lambda_{1S}(m_s) | \\ |\lambda_{2S}(m_s) | \\ |\lambda_{12S}(m_s) | \\ \sqrt{\text{Tr}\left(Y_N^{\dagger} Y_N Y_N^{\dagger} Y_N\right)_{|m_s}} \end{vmatrix} \ll \sqrt{\lambda_S(m_s)} \approx 10^{-5}$$

implying $\lambda_S(M_P) \approx \lambda_S(m_s) \approx 10^{-10}$.

Inflation vs TeV Phenomenology

One-loop RGEs required:

- run 2hdSMASH parameters from low-to-high-scale
- ensure successful inflation at Planck scale, i.e. $\lambda_S(M_{
 m P}) \lesssim 10^{-10}$
- stable evolution from matching scale to M_P
- portal couplings get tight constraints!

Particle Spectra

Figure: Distributions for m_H vs. m_A plane for tan $\beta = 5$.

 $m_H \sim m_A \sim m_H^{\pm}$, naturally compressed spectrum due to $v_s \gg v$. $\lambda_{12S} \sim 10^{-16} - 10^{-15} \implies$ phenomenological spectra with m_H , m_A and m_H^{\pm} within the reach of HL-LHC!

Particle Spectra

Figure: Variation of m_H vs. m_s plane for tan $\beta = 5$. The colour palette denotes v_S and λ_{12S} respectively.

 m_H , m_s increases with increase in v_S and λ_{12S} .

also pointed out in Espriu et.al, Phys. Rev. D 92, 095013 (2015) for DFSZ models without inflationary dynamics

Importance of tan β

Figure: Variation of λ_{12S} vs. m_H for tan $\beta = 5, 10$.

The low energy spectra fully determined by λ_{12S} , v_S and $\tan \beta$.

Benchmarks

All theo.&exp. constraints fulfilled!

Parameters	BP1	BP2	BP3	BP4	BP5
λ_1	0.07	0.07	0.07	0.07	0.07
λ_2	0.287	0.263	0.257	0.258	0.257
λ_3	0.54	0.60	0.24	0.54	0.24
λ_4	-0.14	-0.4	0.27	-0.14	-0.28
λ_S	4.44×10^{-10}	6.5×10^{-10}	1.0×10^{-10}	1.0×10^{-10}	1.0×10^{-10}
λ_{1S}	5.57×10^{-6}	-6.59×10^{-6}	4.8×10^{-14}	4.8×10^{-14}	3.6×10^{-13}
λ_{2S}	-4.27×10^{-6}	1.0×10^{-15}	1.0×10^{-15}	1.0×10^{-15}	1.0×10^{-15}
λ_{12S}	2.5×10^{-16}	$2.5{ imes}10^{-16}$	2.5×10^{-16}	2.5×10^{-16}	2.5×10^{-16}
aneta	5.5	5.5	26	26	18
$Y_{N,1}$	9×10^{-4}	9×10^{-4}	4×10^{-5}	4×10^{-5}	10^{-4}
$Y_{ u,3}$	5.175×10^{-3}	5.175×10^{-3}	1.09×10^{-3}	1.09×10^{-3}	1.2×10^{-3}
v_S	3.0×10^{10}	3.0×10^{10}	3.0×10^{10}	3.0×10^{10}	3.0×10^{10}
$m_h({ m GeV})$	125.2	125.3	125.0	124.9	125.4
$m_H({ m GeV})$	798.7	799.4	1711.5	1711.5	1425.2
$m_s({ m GeV})$	$6.3{ imes}10^5$	$6.7{ imes}10^5$	$3.0{ imes}10^{5}$	3.0×10^{5}	3.0×10^{5}
$m_A({ m GeV})$	799.5	799.5	1711.5	1711.5	1425.2
$m_{H^\pm}({ m GeV})$	802.1	807.0	1709.1	1712.8	1422.2

Conclusion & Outlook

- Inflation in singlet direction: λ_S~10⁻¹⁰
 - stringent constraints (also from BFB) on portal couplings!
- Favoured range for λ_{12S}, v_S, tanβ for heavy Higgs'
 - axionic DM and relic thermal abundance: v_S~O(109-10¹0) GeV
 - large hierarchie between v, v_s: compressed heavy Higgs spectra
 - accessible at HL-LHC, or TeV ILC/CLIC/muC.....
- Indication for preferred direction of inflation
 - impact of accomodating phenomenological constraints
- Still to do:
 - Preheating/reheating discussion: will effect #e-folds, PG-restoration, BAU etc.
 - extended collider phenomenology