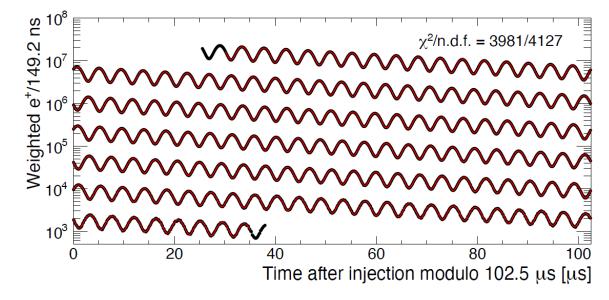

Measurement of the anomalous spin precession frequency ω_a in the Muon g - 2 experiment at Fermilab

Lorenzo Cotrozzi, on behalf of the Muon g - 2 collaboration 18/07/2024 | ICHEP 2024 | Prague

Outline


 $_{\odot}\,\text{Anomalous}$ precession frequency ω_a in

the Muon g-2 experiment at FNAL

o Run-2/3 result (2023) vs Run-1 (2021)

Projections for Run-4/5/6 result

LORENZO COTROZZ

Experiment at Fermilab Muon Campus

Presented in the previous talk by Kim Siang

LORENZO COTROZZI

Anomalous spin precession in B-field

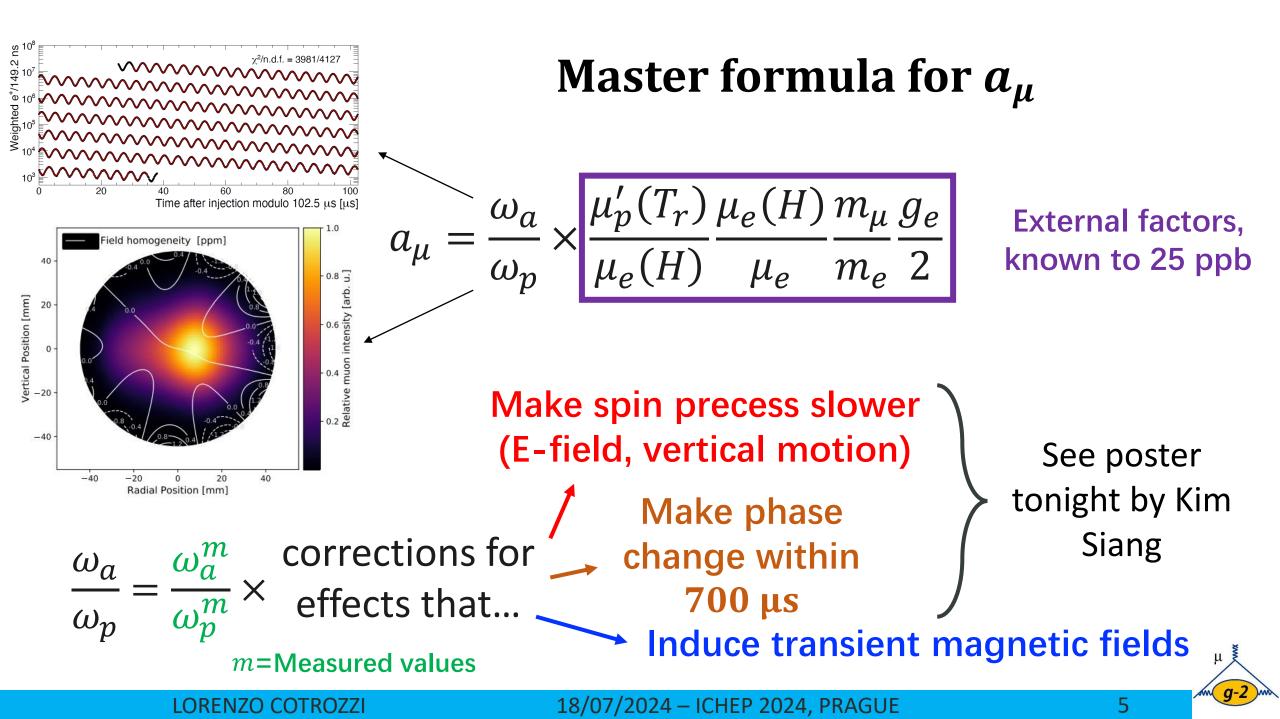
$$g - 2 \neq 0$$

$$a_{\mu} \neq 0$$

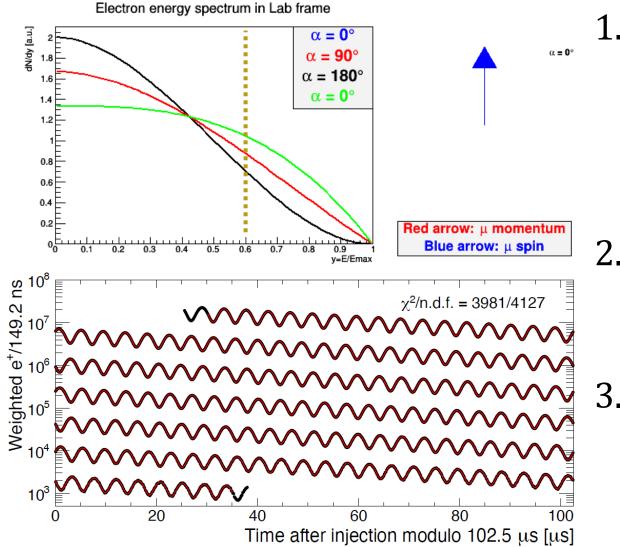
$$\Rightarrow \text{ spin precesses with anomalous frequency } \vec{\omega}_{a} = \vec{\omega}_{\text{spin}} - \vec{\omega}_{c}$$

$$\vec{\omega}_{a} = -\frac{e}{mc} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \vec{\beta} \times \vec{E} - a_{\mu} \frac{\gamma}{\gamma + 1} (\vec{\beta} \cdot \vec{B}) \vec{\beta} \right]$$

$$\gamma = 29.3 \Rightarrow p = 3.094 \text{ GeV/c}$$


$$\vec{\beta} \cdot \vec{B} = 0$$

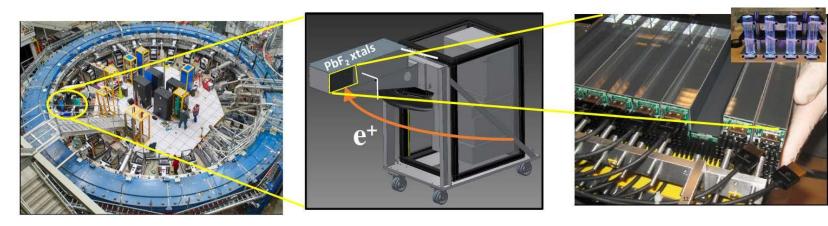
$$\vec{\beta} \cdot \vec{B} = 0$$


$$\omega_{a} \sim 1.439 \text{ rad/}\mu \text{s} \sim 12.4^{\circ} \text{ per turn}$$

18/07/2024 – ICHEP 2024, PRAGUE

4

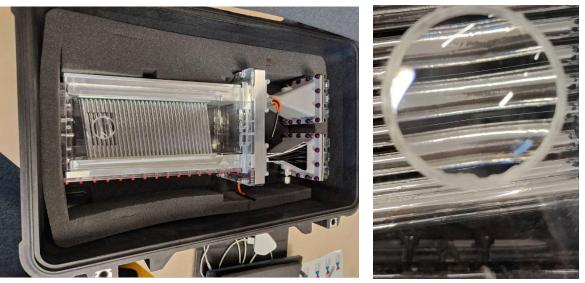
Principle of ω_a measurement


- 1. Weak decays violate parity:
 - polarized muon beam
 - preferred high-energy e⁺ direction
- 2. Correlation in the lab frame between
 - e^+ energy spectrum and ω_a phase
- 3. «Wiggle plot»: count high-energy e^+ over time, for about 700 µs (muon lifetime is ~ 64 µs in the lab)

6

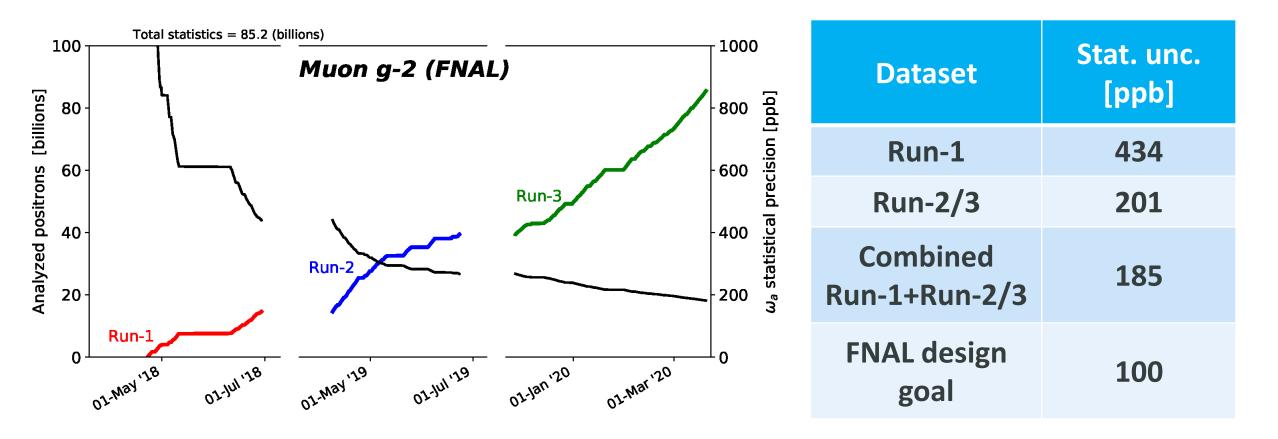
Detectors

24 e.m. calorimeters


• Measure (E,t) of e^+

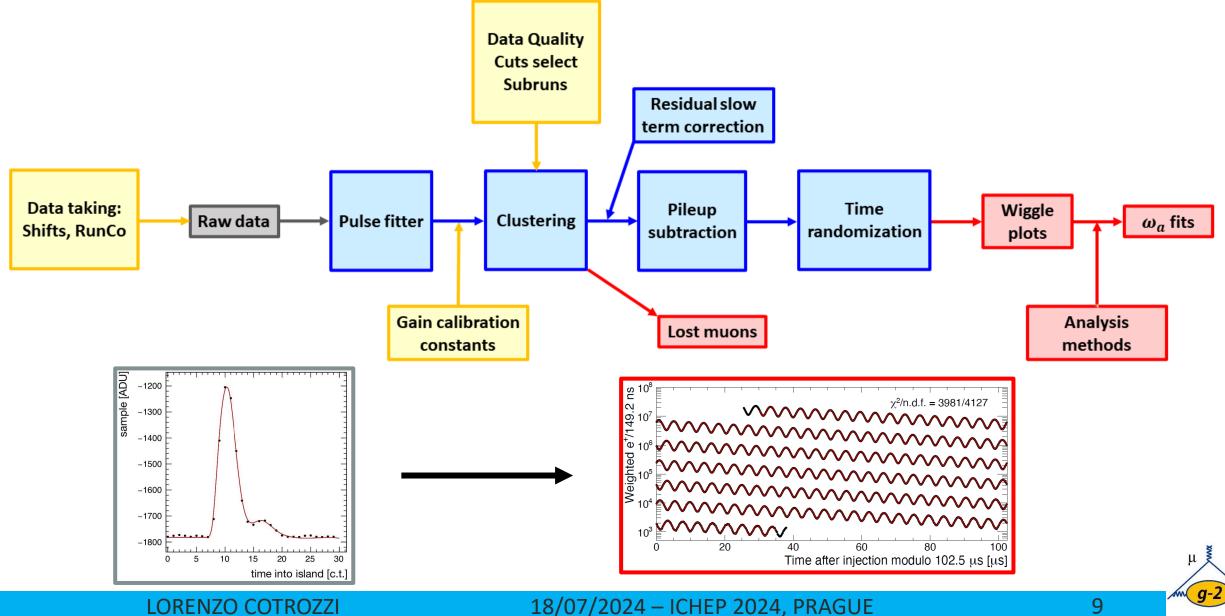
- Each made of $6 \times 9 \text{ PbF}_2$ crystals, $15X_0$, read out by large-area SiPMs
- e^+ generate electromagnetic shower, SiPMs detect Cherenkov light (n = 1.8)

<u>2 straw tube trackers</u>


- Each has 8 modules and 32 planes
- 50:50 Argon:Ethane at 1 atm pressure
- Extrapolate decay vertex location to measure beam distribution

LORENZO COTROZZ

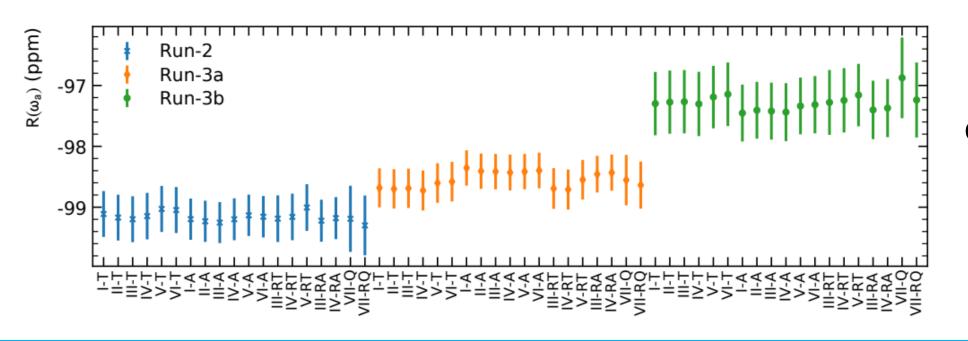
Run-2/3 (2019-2020 campaign)


Statistics: ~ 5 more muon decays than Run-1. Systematic limitations in Run-1 were fixed: reached 25 ppb on ω_a , 70 ppb on a_μ , surpassed design goal of 100 ppb

LORENZO COTROZZ

18/07/2024 – ICHEP 2024, PRAGUE

8


ω_a analysis flowchart

COTROZZ

Run-2/3 ω_a analysis teams

Group	I.	Ш	Ш	IV	V	VI	VII
Pulse fitting & clustering	Local	Local $\Delta t'$	Local «ITA»	Local $\Delta t'$	Global	Global	Q
Pileup subtraction	Shadow	Empirical	«Semi» empirical	Empirical	Empirical	Empirical	-
Analysis methods	Т, А	Т, А	T, A, RT, RA	T, A, RT, RA	T, A, RT	Т, А	Q <i>,</i> RQ

For details on combination: see next talk by Alberto Lusiani

LORENZO COTROZZ

Reconstruct e^+ events

10⁸

107

106

10³

10²

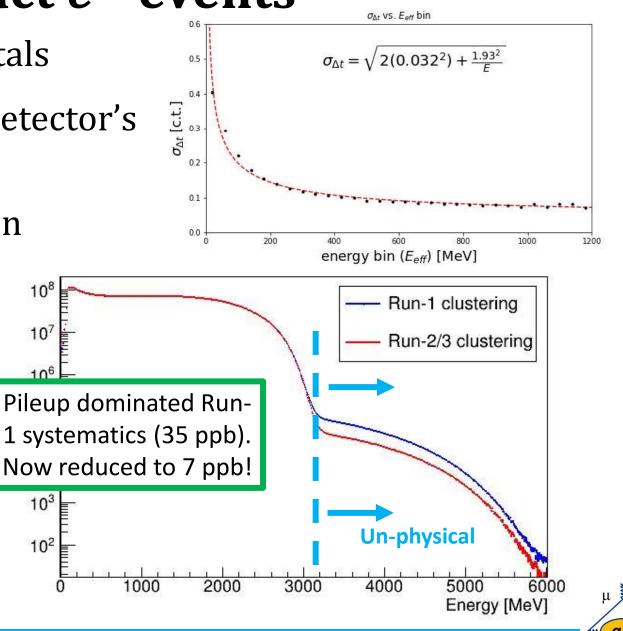
- Pulse fitter identifies traces on crystals
- New algorithms took into account detector's time and energy resolutions

1) Seed

2) Propagation

890 70

3) Low energy hits


• Reduced pileup in un-physical region

30

25

time into island [c.t.]

Pulse fitter

LORENZO

20

sample [ADU]

-1200

-1300

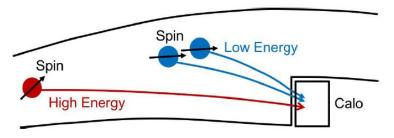
-1400

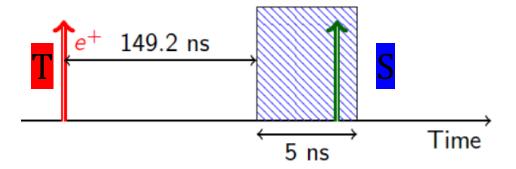
-1500

-1600

-1700

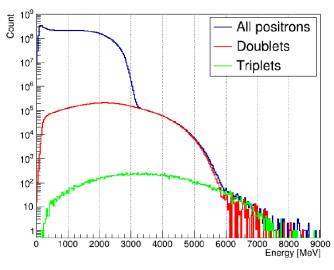
-1800

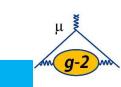

n


10

15

Improved pileup correction since Run-1


(example for «local» method)

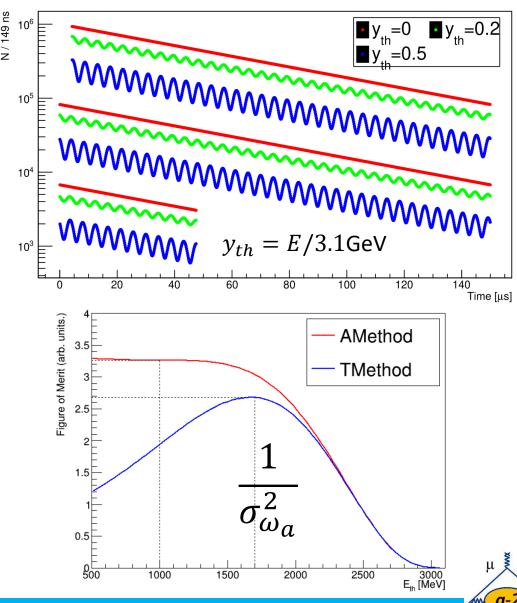

For each **T** (Trigger) cluster that we find:

- Search for coincidence e^+ in <mark>S</mark> (Shadow) window, after 149.2 ns
- Superimpose the two clusters and pass to reconstruction algorithm

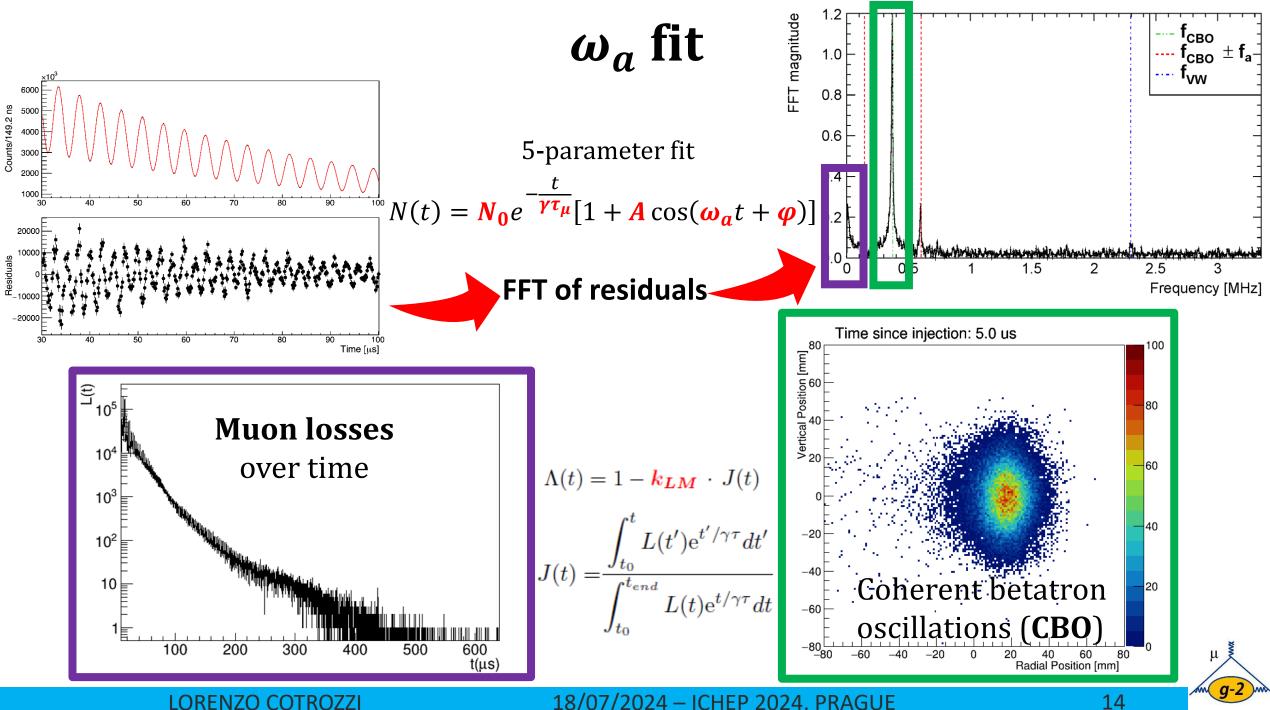
If not resolved: merge them and build pileup

In Run-2/3: also searched for triplets (2 shadows)

12


Methods for ω_a analysis Wiggle plots for different energy thresholds

T-Method:

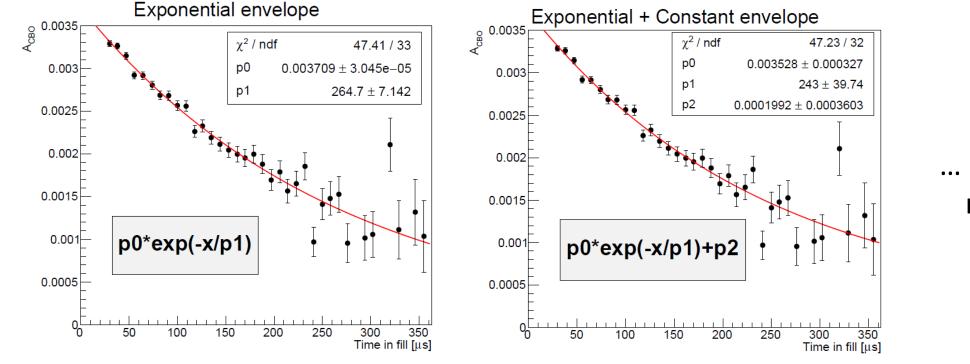

- Greater threshold: wider ω_a oscillations
- Lower threshold: more positrons
- Compromise: 1.7 GeV

A-Method:

- Extract asymmetry (oscillation amplitude) as function of positron energy $\rightarrow A(E)$
- Weight each positron event with A(E)
- σ_{ω_a} (A-Method) ~ 90% σ_{ω_a} (T-Method)

13

LORENZO COTROZZ

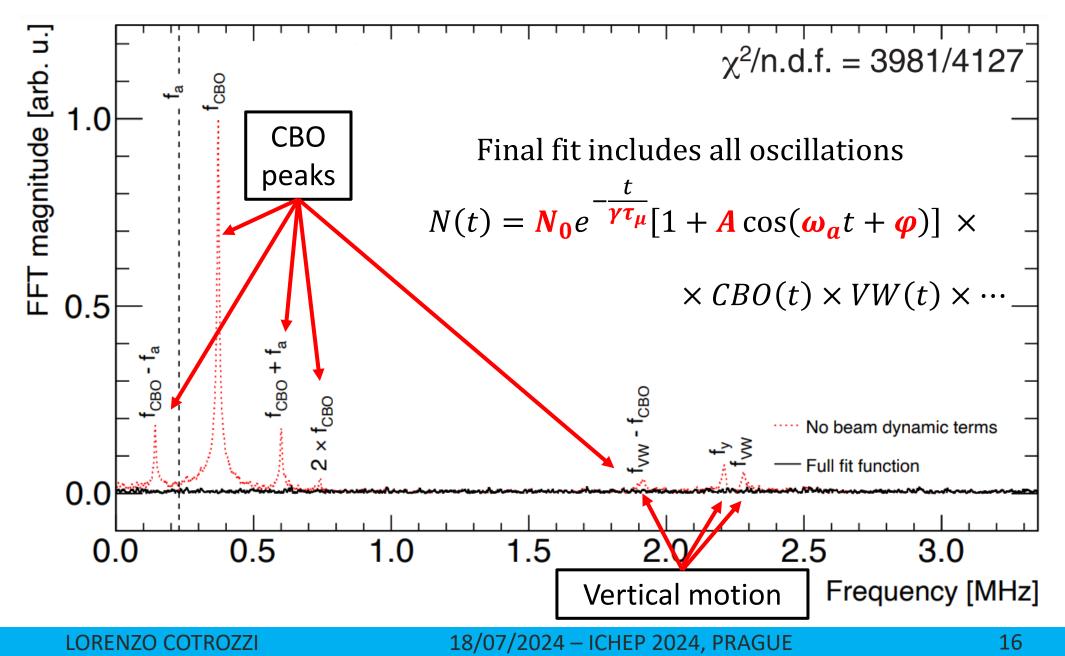

CBO model: amplitude vs time

CBO dominated Run-1 systematics (38 ppb). Now reduced to 21 ppb!

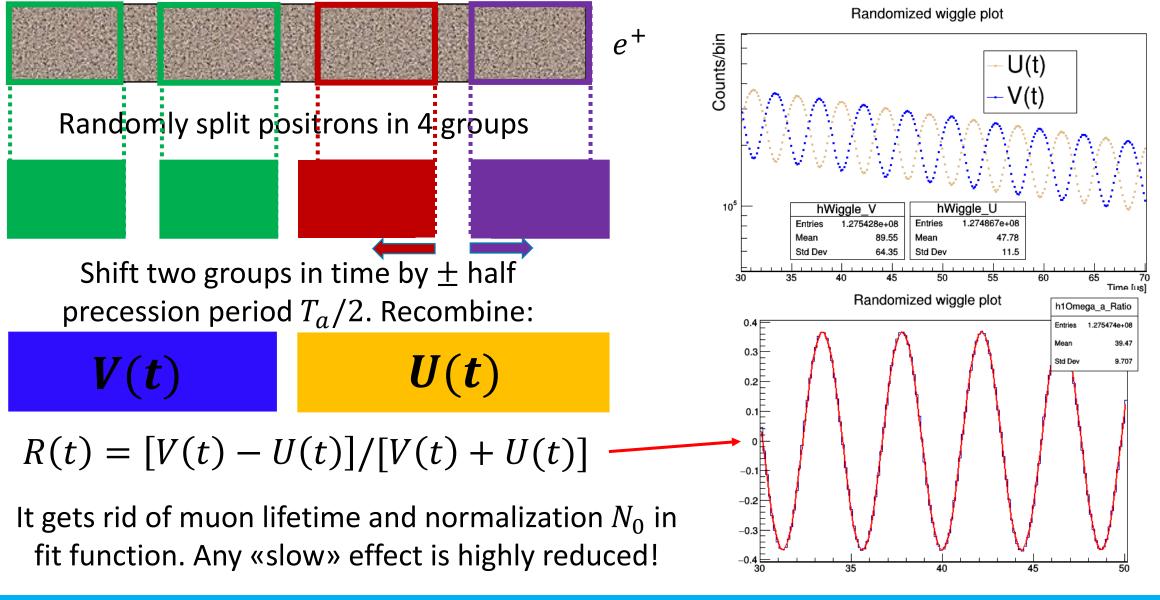
 $CBO(t) = 1 + A_{CBO} \cos(\omega_{CBO}t + \varphi_{CBO}) \times e^{-t/\tau}$ Decoherence

- Muons are an ensemble: betatron oscillations decohere over time
- Sliding window fits to determine good or bad envelopes: more statistics→more studies than Run-1; also input from tracker data

18/07/2024 – ICHEP 2024, PRAGUE


LORENZO

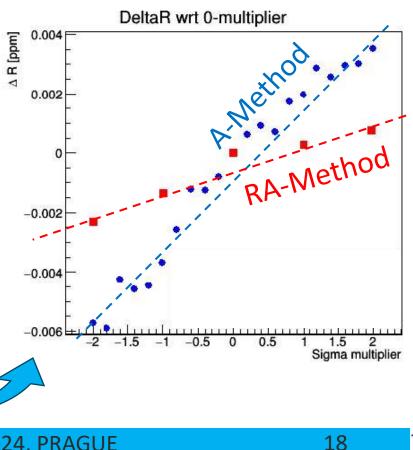
COTROZZ


... and many other models tested

15

Run-2/3: ω_a fit and FFT of residuals

Ratio method wiggle plots


LORENZO COTROZZI

New "Ratio" A-Method

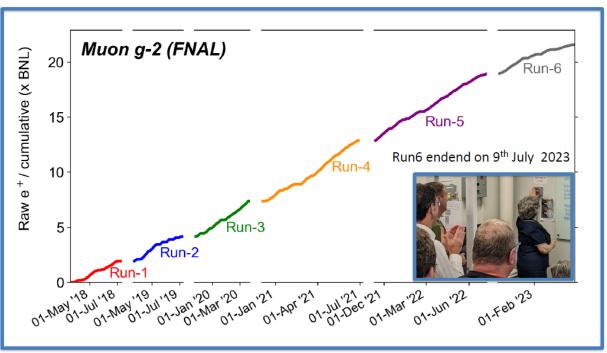
• Weight each positron with asymmetry function (like A-Method)

 $\mathbf{R}: \{V(t); U(t)\} \rightarrow \mathbf{RA}: \{\overline{V}(t) = \sum_{E} A(E) V(E, t); \overline{U}(t) = \sum_{E} A(E) U(E, t)\}$

- **R**: $\frac{V(t) U(t)}{V(t) + U(t)} \rightarrow$ **RA**: $\frac{\overline{V}(t) \overline{U}(t)}{\overline{V}(t) + \overline{U}(t)}$
- Statistical uncertainty on ω_a is minimized
- Exponential due to muon lifetime is cancelled
- Reduces the sensitivity of ω_a to most «slow effects», such as **SiPM gain fluctuations**!

Prospects for ω_a analysis in Run-4/5/6

Statistical uncertainty:


- With Runs1-->6, we expect to surpass design uncertainty of 100 ppb
- 21.9 times the previous BNL experiment

Running conditions in Run-4/5/6:

 Quadrupole Radio-Frequency switched on during Run-5 → reduced radial and vertical motion of muons, more stable beam and less muon losses

Systematic sources of uncertainty:

 CBO expected to be reduced, thanks to Quad RF and to dedicated studies in task forces

On 27 February 2023: proposal Goal of x21 BNL datasets!

LORENZO COTROZZ

Summary and conclusions

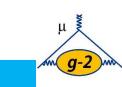
*New muon a_{μ} experimental average has **unprecedented precision of 190 ppb**:

- Factor ~ 2 improvement in statistical and systematic uncertainties on ω_a
- Improved running conditions; upgraded reconstruction and pileup subtraction algorithms; more studies on beam dynamics effects

✤Future analysis is expected to meet desing goals:

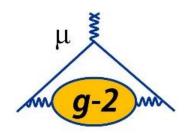
- Surpassed goal statistics: 21+ times w.r.t. previous BNL experiment
- RF system ON: improved beam stability, ongoing evaluation of systematics

... and more details in recent 2024 paper


Cetailed Report on the Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm» on <u>arXiv:2402.15410 [hep-ex]</u>

Soon to be published on Phys. Rev. D

Accepted Paper
Detailed report on the measurement of the positive muon anomalous magnetic moment to 0.20 ppm
D. P. Aguillard et al.
Accepted 21 May 2024


Detailed Report on the Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm D. P. Aguillard,³³ T. Albahri,³⁰ D. Allspach,⁷ A. Anisenkov,^{4, a} K. Badgley,⁷ S. Baeßler,^{35, b} I. Bailey,¹⁷ L. Bailey,²⁷ V. A. Baranov[†],¹⁵ E. Barlas-Yucel,²⁸ T. Barrett,⁶ E. Barzi,⁷ F. Bedeschi,¹⁰ M. Berz,¹⁸ Bhattacharya,⁷ H. P. Binney,³⁶ P. Bloom,¹⁹ J. Bono,⁷ E. Bottalico,^{30, d} T. Bowcock,³⁰ S. Braun,³⁶ M. Bressler G. Cantatore,^{12,*} R. M. Carey,² B. C. K. Casey,⁷ D. Cauz,^{26, f} R. Chakraborty,²⁹ A. Chapelain,⁶ S. Chappa,⁷ S. Charity, ³⁰ C. Chen, ^{31,22} M. Cheng, ³⁶ R. Chaiett, ²⁷ Z. Chu, ^{21,4} T. E. Chupp, ³³ C. Chaessen, ³⁶ M. E. Convery, ⁷ S. Corrodi, ¹ L. Cotrozi, ^{10,30,4}, J. D. Crakovic, ⁷ S. Dabagov, ¹⁴ P. T. Debevec, ³⁸ S. Di Falco, ¹⁰ G. Di Sciassio, ¹¹ S. Donati, ^{10,5} B. Drendel, ⁷ A. Driutti, ^{10,5} V. N. Duginov, ^{11,5} M. Eaks, ³⁰ A. Edmonds, ^{3,27} J. Esquivel,⁷ M. Farooq,³³ R. Fatemi,²⁹ C. Ferrari,^{10, j} M. Fertl,¹⁴ A. T. Fienberg,³⁶ A. Fioretti,¹⁰ D. Flay,³² S. B. Foster,² H. Friedsam,⁷ N. S. Froemming,²⁰ C. Gabbanini,^{10,1} I. Gaines,⁷ M. D. Galati,^{10,1} S. Ganguly,⁷ A. Garcia,³⁶ J. George,^{32, k} L. K. Gibbons,⁶ A. Gioiosa,^{25, 1} K. L. Giovanetti,¹³ P. Girotti,¹⁶ W. Gohn,²⁹ L. Goodenough,⁷ T. Gorringe,²⁹ J. Grange,³³ S. Grant,^{1,27} F. Gray,²¹ S. Haciomeroglu,⁵ T. Halewood-Leagas,³⁰ D. Hampai,⁸ F. Han,²⁹ J. Hempstead,³⁶ D. W. Hertzog,³⁶ G. Hesketh,²⁷ E. Hess,¹⁰ A. Hibbert,²⁰ Z. Hodge,²⁶ K. W. Hong,³⁵ R. Hong,^{1,29} T. Hu,^{23,22} Y. Hu,^{22,4} M. Iacovacci,^{8,4} M. Iacouli,¹⁰ P. Kamuel,²⁶ M. Kargiantonlakis,⁷ M. Kargan,^{25,10} J. Kaspar,²⁶ D. Kawall,²⁶ L. Kelton,²⁹ A. Keshavarri,³¹ D. S. Kesler,²⁷ M. S. Khaval,^{24,24} Z. Khechadoorian,⁶ N. V. Khomut,^{10,15} B. Kibburg,^{7,10} B. Kibburg,^{7,10} O. Kim,³⁴ N. Kinnaird,² E. Kraegeloh,³³ V. A. Krylov,¹⁵ N. A. Kuchinskiy,¹⁵ K. R. Labe,⁶ J. LaBounty,³ M. Lancaster,³¹ S. Lee,⁵ B. Li,^{22,1, p} D. Li,^{22, q} L. Li,^{22, g} I. Logashenko,^{4, a} A. Lorente Campos,²⁹ Z. Lu,²², A. Lucà,⁷ G. Lukicov,²⁷ A. Lusiani,^{10, 7} A. L. Lyon,⁷ B. MacCoy,³⁶ R. Madrak,⁷ K. Makino,¹⁸ S. Mastroiann J. P. Miller,² S. Miozzi,¹¹ B. Mitra,³⁴ J. P. Morgan,⁷ W. M. Morse,³ J. Mott,^{7,2} A. Nath,^{9, n} J. K. Ng,^{23,22} H. Nguyen,⁷ Y. Oksuzian,¹ Z. Omarov,^{16,5} R. Osofsky,³⁶ S. Park,⁵ G. Pauletta[†],^{26, f} G. M. Piacentino,^{25, f} R. N. Pilato,³⁰ K. T. Pitts,^{28, *} B. Plaster,²⁹ D. Počanić,³⁵ N. Pohlman,²⁰ C. C. Polly,⁷ J. Price,³⁰ B. Quinn,³ M. U. H. Qureshi,¹⁴ S. Ramachandran,^{1, k} E. Ramberg,⁷ R. Reimann,¹⁴ B. L. Roberts,² D. L. Rubin,⁶ M. Sakurai,² L. Santi,^{26, f} C. Schlesier,^{28, t} A. Schreckenberger,⁷ Y. K. Semertzidis,^{5, 16} D. Shemyakin,^{4, a} M. Sorbara,^{11, a} J. Stapleton,⁷ D. Still,⁷ D. Stöckinger,²⁴ C. Stoughton,⁷ D. Stratakis,⁷ H. E. Swanson,³⁶ G. Sweetmore,³ D. A. Sweigart,⁶ M. J. Syphers,²⁰ D. A. Tarazona,^{6,30,18} T. Teubner,³⁰ A. E. Tewsley-Booth,^{29,33} V. Tishchenko, N. H. Tran.^{2, v} W. Turner.³⁰ E. Valetov.¹⁸ D. Vasilkova.^{27, 30} G. Venanzoni.^{30, d} V. P. Volnvkh.¹⁵ T. Walton.⁷ A. Weisskopf,¹⁸ L. Welty-Rieger,⁷ P. Winter,¹ Y. Wu,¹ B. Yu,³⁴ M. Yucel,⁷ Y. Zeng,^{23, 22} and C. Zhang³⁰ (The Muon g - 2 Collaboration) ¹Argonne National Laboratory, Lemont, Illinois, USA ²Boston University, Boston, Massachusetts, USA okhaven National Laboratory, Upton, New York, USA Budker Institute of Nuclear Physics, Novosibirsk, Russia ⁵Center for Axion and Precision Physics (CAPP) / Institute for Basic Science (IBS), Daejeon, Republic of Korea ⁶Cornell University, Rhaca, New York, USA mi National Accelerator Laboratory, Batavia, Illinois, USA INFN Laboratori Nazionali di Frascati Frascati Italu INFN, Sezione di Napoli, Naples, Italy ⁰INFN, Sezione di Pisa, Pisa, Italy ¹³INFN, Sezione di Roma Tor Vergata, Rome, Italy ¹²INFN, Sezione di Trieste, Trieste, Italy ics and Astronomy, James Madison University, Harr nurg, Virginia, USA Institute of Physics and Cluster of Excellence PRISMA+. Johannes Gutenberg University Mainz, Mainz, German ¹⁵ Joint Institute for Nuclear Research, Dubna, Russia Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea ¹⁷Lancaster University, Lancaster, United Kingdom ¹⁸Michigan State University, East Lansing, Michigan, USA ¹⁹North Central College, Naperville, Illinois, USA ²⁰ Northern Illinois University, DeKalb, Illinois, USA ²¹Regis University, Denver, Colorado, USA ²²School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China ²³Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, China Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Ger ⁵Università del Molise, Campobasso, Italy

✤A few more physics papers will come out in the future, e.g. Beyond Standard Model searches: see tomorrow's talk on CPT/LIV by Baisakhi Mitra

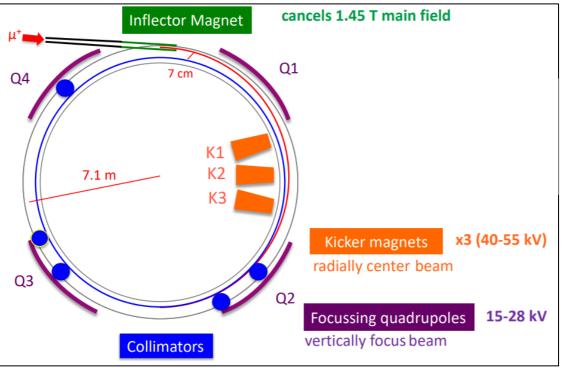
21

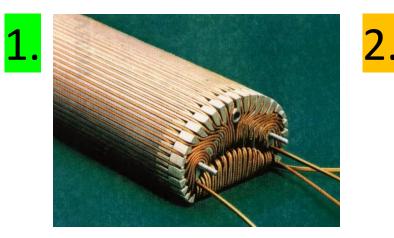
THANK YOU FOR YOUR ATTENTION!

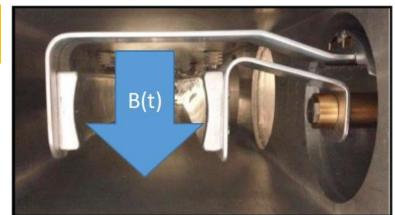
LEVERHULME TRUST_____

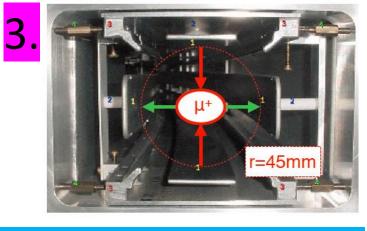
lorenzo.cotrozzi@liverpool.ac.uk

July 2023 collaboration meeting @ Liverpool, UK

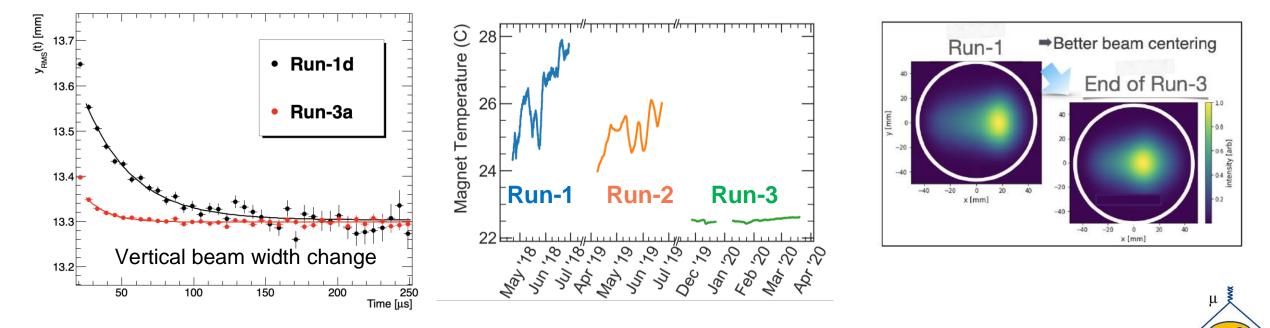





Extra: Bad resistors backup


Injection and muon storage

- Inflector cancels main dipole field and injects at ~8 cm radially away from nominal orbit
- 2. 3 fast magnetic kickers provide 10 mrad kick and place muons in orbit
- 3. 8 Electrostatic Quadrupoles (ESQ) focus in the vertical direction



LORENZO COTROZZ

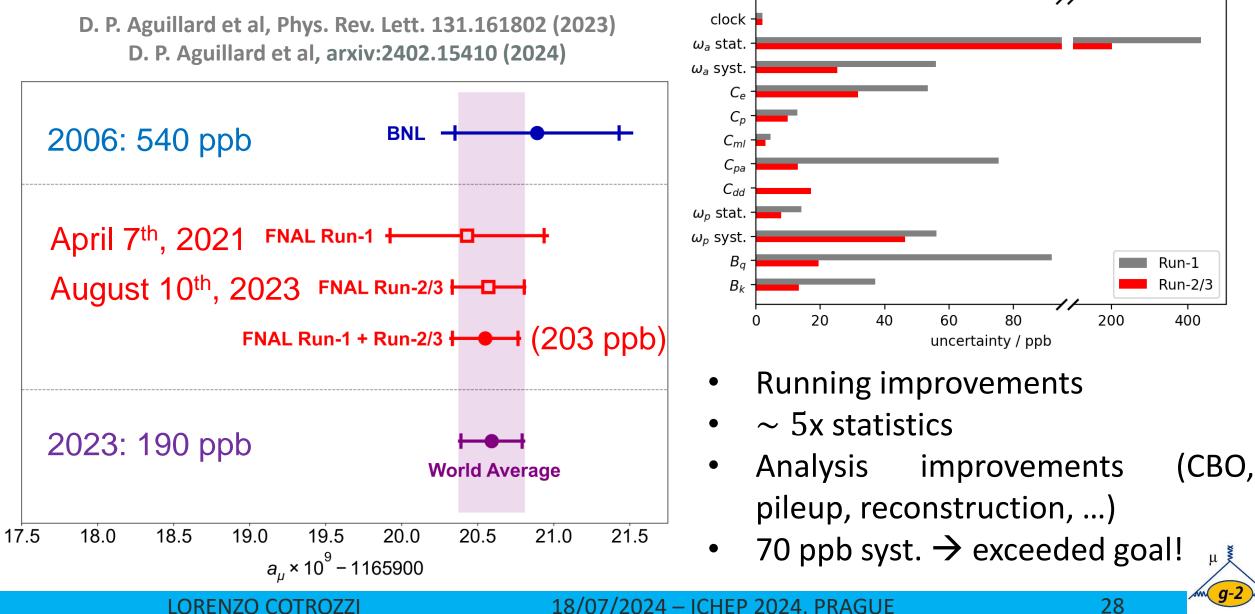
Run-2/3 improved running conditions

- Before Run-2: fixed faulty resistors in 2/32 quadrupole plates → better storage, more stable beam oscillations and reduced systematics
- After Run-2: added thermal insulation to ring \rightarrow less variable magnetic field
- Mid Run-3: **upgraded kicker** cables for optimal kick → more centered beam

LORENZO COTROZZ

18/07/2024 – ICHEP 2024, PRAGUE

25


Extra: ω_a backup

Run-1 vs Run-2/3 systematics

Quantity	Correction terms (ppb)	Uncertainty (ppb)
ω_a^m (statistical)		434
ω_a^m (systematic)		56
C_e	489	53
$\tilde{C_p}$	180	13
C_{ml}	-11	5
C_{pa}	-158	75
$f_{\text{calib}}\langle \omega_p(x, y, \phi) \times M(x, y, \phi) \rangle$		56
B_k	-27	37
B_q	-17	92
$\mu_p'(34.7^{\circ})/\mu_e$		10
m_{μ}/m_e		22
$g_e/2$		0
Total systematic		157
Total fundamental factors		25
Totals	544	462

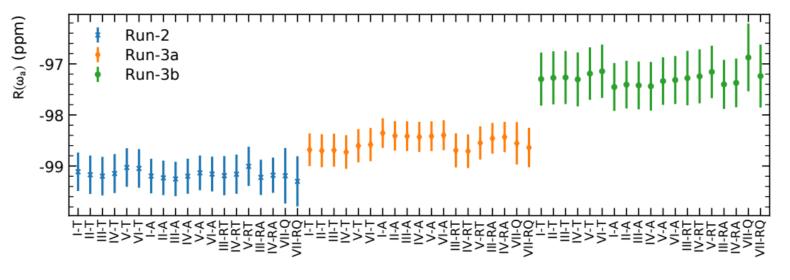
Quantity	Correction (ppb)	Uncertainty (ppb)
ω_a^m (statistical)		201
ω_a^m (systematic)		25
C_e	451	32
$C_p \\ C_{pa}$	170	10
C_{pa}	-27	13
C_{dd}	-15	17
C_{ml}	0	3
$f_{\text{calib}} \cdot \langle \omega_p'(\vec{r}) \times M(\vec{r}) \rangle$		46
B_k	-21	13
B_q	-21	20
$\mu_p'(34.7^{\circ})/\mu_e$		11
m_{μ}/m_e		22
$g_e/2$		0
Total systematic for \mathcal{R}'_{μ}		70
Total external parameters		25
Total for a_{μ}	622	215

Run-2/3 Result: FNAL + BNL Combination

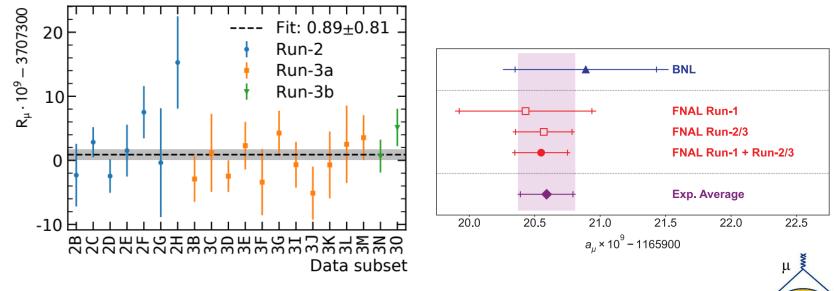
Blinded analysis

• **Hardware**: main clock is tuned at $(40 - \varepsilon)$ MHz Offset only known to two scientists external to the

collaboration

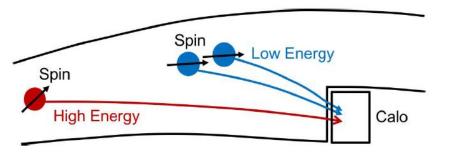


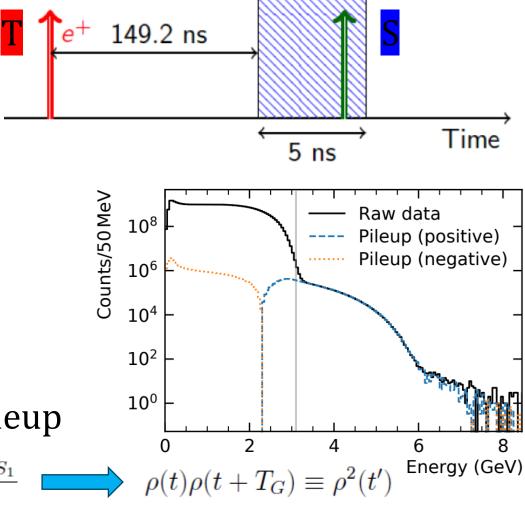
• **Software**: each ω_a analyzer applies their own, secret offset to their results


Run-2/3 unblinding

Software unblinding

Hardware unblinding





30

LORENZO COTROZZ

Example of new method to subtract pileup

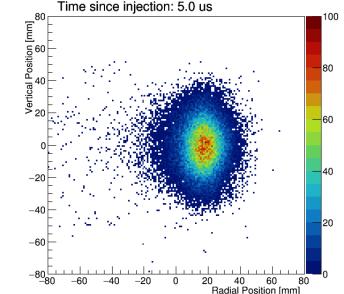
31

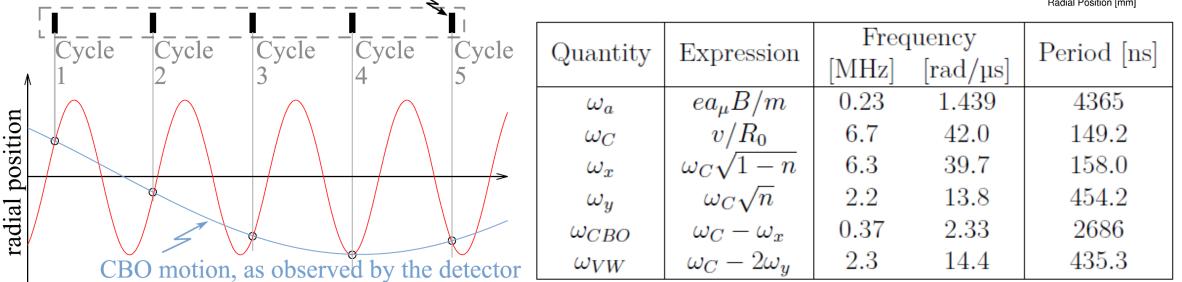
- For each **T** (Trigger) cluster that we find:
- Search for coincidence e⁺ in S (Shadow) window, after 149.2 ns
- Superimpose the two clusters and pass to reconstruction algorithm

 \rightarrow If not resolved: merge them and build pileup

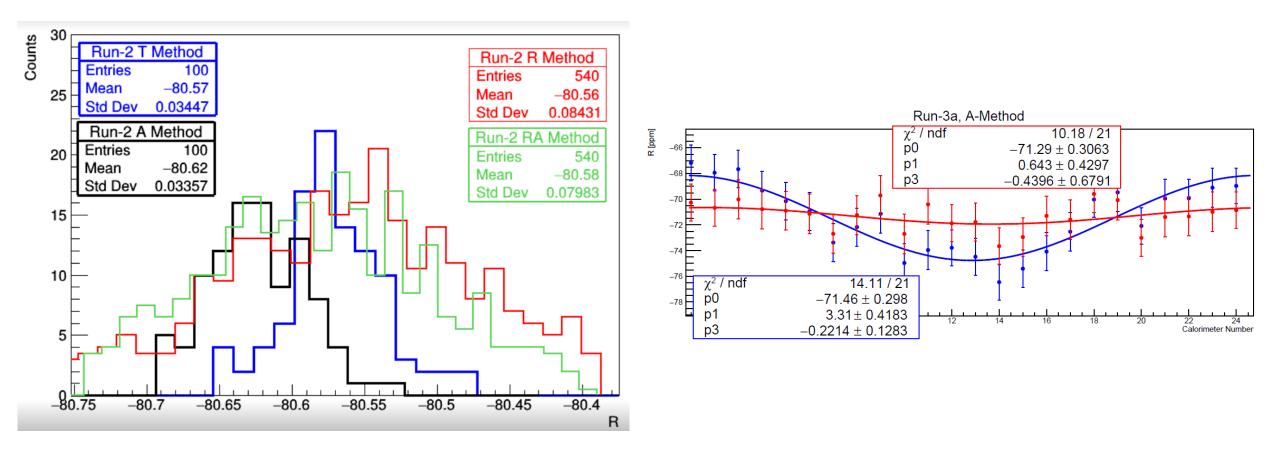
$$E_2 = (E_T + E_{S_1}) \qquad t_2 = \frac{(t_T + T_G/2)E_T + (t_{S_1} - T_G/2)E_{S_1}}{E_T + E_{S_1}}$$

Finally: subtract merged event and add single events


LORENZO COTROZZI

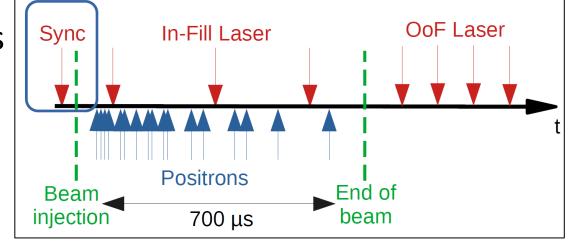

Radial and vertical motion of the beam

- Field index: *n* (quad voltages)
- Radial motion of the beam: $\omega_x = \omega_c \sqrt{1-n}$
- CBO is the aliased frequency $\omega_{CBO} = \omega_c \omega_x$


Detector

- CBO period of about 2.7 μs

Randomization

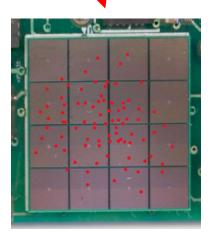


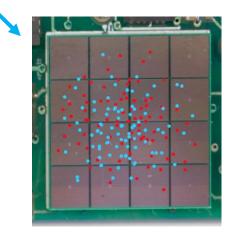
Laser-based gain monitoring system

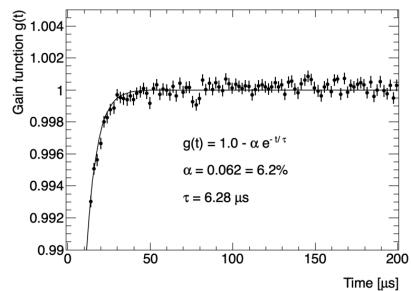
Built by INFN/CNR-INO: time synchronization and calibration of 1296 SiPMs on timescales from ns to days/weeks. Gain changes dominated ω_a systematics at BNL: exceeded goal of 20 ppb at FNAL.

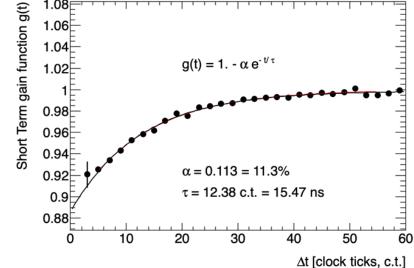
Standard operating mode:

- Sync pulse: time synchronization at ~ 50 ps
- In-Fill pulses: monitor rate-dependent gain changes at 10^{-4} during 700 µs of μ^+ beam

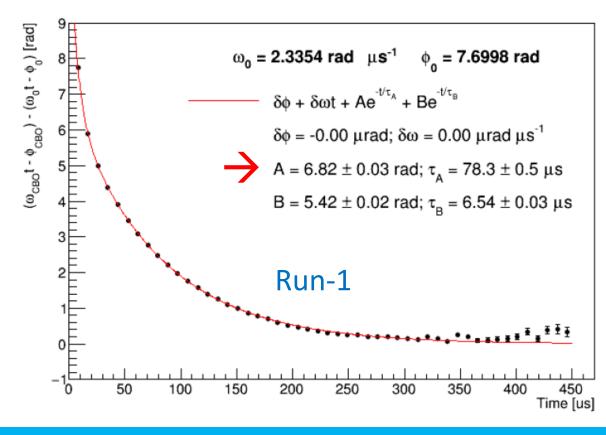


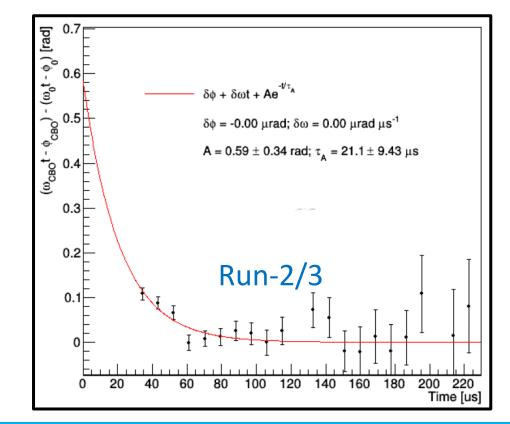

• Out-of-Fill pulses: monitor stability over days


SiPM gain calibration


- In-Fill: sag in power supply due to initial injection splash.
- Recovery timescale of front-end electronics: $O(10 \ \mu s)$.

Short-term: consecutive positron hits within $\mathcal{O}(100 \text{ ns})$. After the first hit, the recovery time of pixels reduce the gain experienced by the second hit.

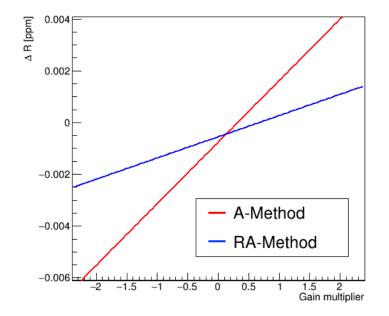




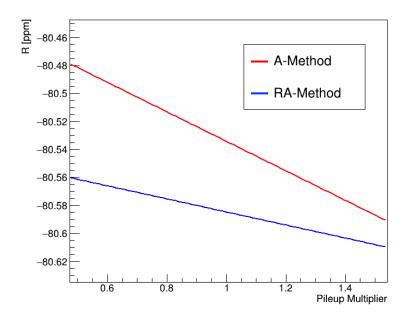
CBO model: frequency vs time

CBO dominated Run-1 systematics (38 ppb). Now reduced to 21 ppb!

- Exponential relaxation of CBO frequency
- Run-1: faulty ESQ resistors enhanced this effect 10 times!
- Sliding window fits to determine lifetime and constrain it in ω_a fits


Run-4/5/6: current status and puzzles

- With much more statistics, we can investigate the residual slow term


 → energy leakage in calorimeters?
 → reconstruction effect?
- Further improved reconstruction with new pulse fitting technique
- Task forces in place to address dominating Run-2/3 systematics
- Quadrupole Radio-Frequency switched on during Run-5, to highly reduce radial and vertical motion of muons → more stable beam dynamics and much fewer lost muons!

«Slow» effects: ratio vs non-ratio

$$\frac{d\langle p \rangle}{dt} \neq 0 \rightarrow \frac{\Delta \omega_a}{\omega_a} = \frac{1}{\omega_a} \cdot \frac{d\langle \varphi \rangle}{dt} = \frac{1}{\omega_a} \cdot \frac{d\langle \varphi \rangle}{d\langle p \rangle} \cdot \frac{d\langle p \rangle}{dt} \neq 0$$
$$\varphi(t) = \varphi(0) + \dot{\varphi}t + \dots \rightarrow \omega_a t + \varphi(t) = (\omega_a + \dot{\varphi})t + \dots$$

Gain calibration

Pileup

18/07/2024 – ICHEP 2024, PRAGUE

μ

a-2