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Introduction

The initial density of both the Dark Matter(DM) and the Standard Model (SM) particles may be produced via perturbative decay of inflaton with different decay rates, creating an initial temperature ratio, & = (TDM/T5M>Z.
considering internal thermalization. This scenario implies inflaton mediated scatterings between the DM and the SM, that can modify the temperature ratio even for high inflaton mass O(10” GeV). The effect of these scatterings is
studied in a gauge-invariant model of inflaton interactions upto dimension-5 with all the SM particles including Higgs. It is observed that an initially lower(higher) DM temperature will rapidly increase(decrease), even with very small
couplings to the inflaton. There is a sharp lower bound on the DM mass for satisfying relic density due to faster back-scatterings depleting DM to SM. The DM-SM scatterings have also been studied considering appropriate
quantum statistics for both the sectors. It is observed that the inclusion of quantum effects considering both the sectors to follow Bose-Einstein distribution, leads to enhancement in DM abundance compared to the case of the
sectors obeying classical Maxwell-Boltzmann statistics. Thus inflaton-mediated collisions with predictable rates, relevant even for high-scale inflation models, can significantly impact the cosmology of light DM.

1: An Effective Theory of Reheating
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Inflaton dominantly couples to the SM Higgs

» Inflaton, ¢ dominantly couples with the SM higgs through the renormalizable coupling : ,uq@HTH.

» Relevant decay widths considering, the reheat temperature, Tz > Ty (electroweak phase transition
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2: Boltzmann Equation & Collision terms |

Equation for the evolution of DM phase-space density f,(p,?):

0 fx(p,1t)
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Integrating over p, equation for DM number density obtained:
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Define temperature as the average over |p|°/3E over the distribution " :
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Evolution equation for the DM temperature :
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For lower inflaton mass, m, = 10° GeV :
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Figure 1. Evolution of £ = T\ /75y, as a function of m, /Ty (left), and the corresponding evolution of the DM yield Y, (right) for
reheat temperature of T ~ 5 x 10° GeV and inflaton mass of Mgy = 10% GeV.

For higher inflaton mass, m, = 107 GeV :
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Figure 2. Same as Fig. 1 (left panel), for a reheat temperature of T ~ 5 X 10° GeV and inflaton mass of m, = 107 GeV (left).
Comparison of the evolution of £ = T /75y for two different scales of the inflaton mass and reheat temperature (right).

Relic density plot with cosmological constraints :
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Figure 3. Cosmological constraints on the DM mass m, and the DM-inflaton coupling 1i,, from considerations of the DM total
abundance, the CMB anisotropies and the BBN, both without and with the effect of the collision processes. (left) For m, = 107 GeV,
A =107 GeV ; (right) m, = 10" GeV, A = 10" GeV
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Inflaton dominantly couples to the SM Gauge Bosons and Fermions

» Inflaton decay widths to SM gauge bosons :  I'; . ;; = 9121#%5 [before EWSB]
\/m3—4m? (m
= gljr Agmf ‘( 235 — Qmémg i 3m§) after EWSB]
s é

» Inflaton decay widths to SM fermions after EWSB : I ., = RV i (f(Qmi — 5my) + Sgﬁmém@
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Figure 4. DM-SM(~, Z and W) 2 — 2 interaction diagrams. Left: s-channel x(p;) + x(py) — SM(p;3) + SM(p,) annihilation.
Right: t-channel x(p;) + SM(p,) — x(p3) + SM (p,) scattering.
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Effects of DM-SM (Gauge Bosons and Fermions) scattering

The evolution of temperature ratio for different inflaton masses:
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Figure 5. Evolution of £ =T, /T, as a function of m, /Ts\ for reheat temperature of T ~ 5 X 10 GeV, inflaton mass of My = 103
GeV (left) and for a reheat temperature of Tk ~ 5 x 10% GeV, inflaton mass of m, = 107 GeV (right). The initial &; values are same
for both the plots.

Relic density plot with cosmological constraints :
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Effect of Quantum Statistics in DM-SM scattering

» DM scatternigs with SM Gauge Bosons where both follow Bose-Einstein distribution :
dny (1)
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Figure 6. Evolution of DM yield Y, (left) and temperature (right) considering DM-SM elastic and inelastic scatterings. The red(blue)
lines indicate the scenario when both the SM and DM follows Maxwell-Boltzmann(Bose-Einstein) distribution.

» Effect on DM abundance with BE distribution compared to MB distibution: 2.3-fold enhancement

To find more about our

Future directions ork, please visit :

» Scope of extension by having SM and DM produced through both perturbative
and non-perturbative preheating, with detailed analysis of thermalization.
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