

and Electron Spectra measured by AMS

J. Casaus, CIEMAT, Madrid (Spain) on behalf of the AMS Collaboration 42nd International Conference on High Energy Physics Prague - 18-24 July 2024

AMS was installed on the International Space Station in May 2011

Near Earth Orbit: • altitude 400 km • inclination 52 deg • period 92 min

To date, over 230 billion charged particles have been collected by AMS₂

AMS is a TeV precision magnetic spectrometer in space

Origin and Propagation of Cosmic Rays

New sources: pulsar, ...

Before being detected by AMS,

All the galactic cosmic rays propagate in the solar system (heliosphere)

Solar Modulation of Cosmic Rays

Cosmic rays (high energy)

Cosmic ray intensity at low energies is modulated by the Sun through the influence of magnetic field and solar wind.

Shockfron

AMS continuously measures cosmic ray fluxes of different species (matter and antimatter), with high precision and time granularity. Solar System Heliosphere

5

Cosmic rays (low energy)

Long Term Variation: Solar Cycle

Daily electron and daily proton over 12.5 years The time-dependent behavior of the Φ_{e^-} and Φ_{p} is distinctly different

Non recurrent variations of Electron and Proton Fluxes

During lower solar activity in 2011 and 2017, a difference between the short-term evolution of electrons and protons is observed, while during the solar maximum in 2015 the difference vanishes.

These observations indicate a charge-sign dependence in nonrecurrent solar modulation.

Recurrent variations of Electron and Proton Fluxes: Periodicities

The rigidity dependence of the electron periodicities is different from that of protons

In the second half of 2011 the strength of the 27-day period of electrons is **greater** than that of protons.

In the first half of 2017 the strength of the 27-day period of electrons is **less** than that of protons.

A Hysteresis between Φ_{e^-} and Φ_{p}

To assess the significance of the hysteresis we study, at different solar conditions, the values of Φ_p at the same Φ_{e^-}

The hysteresis is observed with a significance $> 6\sigma$ at rigidities below 8.5 GV

New hysteresis between electron and proton

New Hysteresis between electron and proton

Daily positron extending to November 2023

Linear relationship between positron and proton fluxes

Different mass, same charge

Linear relation between Φ_{e^+} and Φ_p

To compare the long-term variations of the **proton** and **positron** fluxes a linear relation between the relative variations of the fluxes is studied: $\frac{\Phi_{e^+} - \langle \Phi_{e^+} \rangle}{\langle \Phi_{e^+} \rangle} = \frac{k}{\langle \Phi_p \rangle} \frac{\Phi_p - \langle \Phi_p \rangle}{\langle \Phi_p \rangle}$

Below 7 GV, the positron flux is more modulated than the proton flux

15

Hysteresis between positron and electron fluxes

Same mass, opposite charge

Summary of daily electron and positron fluxes

Fluxes in unit of [m⁻²sr⁻¹s⁻¹GV⁻¹]

Daily fluxes over a 22-year solar cycle

2026 2025 2027 2024 We are approaching RA [1.00 - 1.71] GV **Φ** the next solar [2.97 - 4.02] GV $\Phi_{e^-} imes 2.5$ magnetic field reversal [5.90 - 7,10] GV/ $\Phi_{e^-} imes 8'$ NR [8.48 - 11.0] GV $\Phi_{e^-} imes 16$ new data 2030 2021 $30 \Phi_e^-$ 20 10 2020 2011 STOS STOS 2019 solarreversal By 2030, AMS will cover 2018 nearly a complete 22-year solar cycle R017 2014 2016 2015

AMS is a unique experiment to carry out precise studies on the time variability of the individual species in cosmic rays

By 2030, AMS will cover a complete 22-year solar cycles, and more unexpected results are yet to come