High energy $\gamma\gamma$ interactions at the LHeC

Krzysztof Piotrzkowski

AGH University, Kraków

in collaboration with

Laurent Forthomme, Hamzeh Khanpour (AGH U.) & Yuji Yamazaki (Kobe U.)

ICHEP2024, Praha

July 20, 2024

- コント (目) ト (日) ト (日) () ()

2 $\gamma\gamma$ Interactions @LHeC

3 $\gamma\gamma$ Highlights

Krzysztof Piotrzkowski (AGH)

High energy $\gamma \gamma$ interactions at the LHeC

July 20, 2024

Large Hadron-electron Collider

- LHeC is to operate at center-of-mass energy of 1.2 TeV and is expected to deliver integrated electron-proton luminosity of $\overline{about} 1 ab^{-1}$
- It offers clean experimental environment \Rightarrow negligible event pileup + possibility of data streaming ("no triggers"!)

	Parameter	Unit	LHeC			FCC-eh		
			CDR	$\operatorname{Run}5$	Run 6	Dedicated	$E_p=20{\rm TeV}$	$E_p = 50 \mathrm{TeV}$
TTT	E_e	GeV 10 ¹¹	60 1.7	30 2 2	50 2 2	50 2 2	60 1	60 1
LHeo	ϵ_p	μm	3.7	2.5	2.5	2.5	2.2	2.2
	I_e N_e	mA 10^9	6.4 1	15 2.3	20 3.1	50 7.8	20 3.1	20 3.1
	β^* Luminosity	${\rm cm \over 10^{33} cm^{-2} s^{-1}}$	10 1	10 5	7 9	7 23	12 8	15 15

Figure: Principal parameters for LHeC [J. Phys. G 48 (2021) 11, 110501] as well as for FCC-eh.

• Providing high energy *electron-hadron* collisions is also part of ongoing studies of Future Circular Collider (FCC) running in FCC-eh mode with center-of-mass energies yet significantly higher than at LHeC [Eur. Phys. I. C 79 (2019) 474].

Krzysztof Piotrzkowski (AGH)

High energy $\gamma \gamma$ interactions at the LHeC

July 20, 2024

Detector for electron-hadron AND hadron-hadron collisions

• Design of special interaction region allowing for both electron-hadron and hadronhadron collions at HL-LHC was proposed, together with corresponding "general-purpose" detector [Eur. Phys. J. C 82 (2022) 1, 40]:

Inner Barrel			
pix	3.3	- 3.3	2
pixmacro	2.	- 2.	4
strip	1.3	- 1.3	4
			#Ringswheels
End Caps			
pix	4.1/-1.1	1.1/-4.1	2
pixmacro	2.3 / - 1.4	1.4/-2.3	1
strip	2J - 0.7	0.7/- 2.	1-4
pix	5.2	2.6	2
Fwd Tracker			
pixmacro	3.4	2.2	1
strip	3.1	1.4	4
pix	- 2.6	- 4.6	2
Bwd Tracker			
pixmacro	- 2.2	- 2.9	1
strip	- 1.4	-2.5	4
Total $\eta_{max/min}$	5.2	- 4.6	

nmin

nmax

LHeC Tracker Part

Figure: Side view of updated baseline LHeC detector concept, providing overview of main detector components and their locations.

Figure: Tracker parts in revised LHeC detector configuration.

• Note very large tracking coverage in pseudo-rapidity!

For more details see dedicated contributions at this conference – **#1038** *The LHeC: Basic Concepts and Layout of the Machine*, and **#1319** *A detector for future DIS at the energy frontier*.

Krzysztof Piotrzkowski (AGH)

High energy $\gamma \gamma$ interactions at the LHeC

July 20, 2024

4/15

#Laversnorrel

Unique Physics at the LHeC

• LHeC offers extremely rich scientific program of its own as well as provides means to significantly improve scientific outcome at LHC!

Figure: DIS kinematic plane for ep experiments.

 For more details see dedicated contributions at this conference – #1314 The general-purpose LHeC and FCC-eh highenergy precision programme: Top and EW measurements, #1312 The LHeC and FCC-eh experimental program, #1309 Proton and nuclear structure from EIC and HERA to LHeC and FCC-eh, and #1316 Higgs precision physics in electron–proton scattering at CERN.

Krzysztof Piotrzkowski (AGH)

High energy $\gamma \gamma$ interactions at the LHeC

- edge laboratory for exploring electroweak and Higgs physics, and for making unique searches of Beyond Standard Model (BSM) physics.
- LHeC opens research fields in DIS at new energy and intensity frontiers \rightarrow it extends kinematic range in electron-hadron scattering by orders of magnitude.
- LHeC serves also as high-energy electron-ion (eA) collider nuclear effects can be optimally investigated using updated detector concept allowing \rightarrow studies of eA and AA interactions using same setup.
- Note: Thanks to clean experimental conditions, triggering/selection/reconstruction of many specific/exclusive final states is feasible.
- Reminder: LHeC luminosity exceeds that of HERA by a factor of approximately 1000!

 $\gamma\,\gamma$ Interactions @LHeC

High energy $\gamma\gamma$ interactions at the LHeC

- Studies of high energy photon-photon interactions can be performed at LHeC for $\gamma\gamma$ center-of-mass energy of up to almost 1 TeV (and well beyond that at FCC-eh !).
- Wide spectrum of $\gamma\gamma$ processes can be studied, including for example exclusive production of lepton pairs, Higgs bosons, W and Z boson pairs as well as pairs of charged supersymmetric particles.
- High event statistics is (often) expected.

Figure: Exclusive W and Z boson pair production via photon-photon fusion at LHC (left) and LHeC (right). Additional exchange between protons (yellow band) represents hadronic re-scattering, absent in *ep* collisions.

イロト イポト イヨト イヨト

 $\gamma \gamma$ Interactions @LHeC

Equivalent Photon Approximation (EPA)

 In EPA [Phys. Rept. 15 (1975) 181-281], cross-sections for two-photon production in electronproton collisions are calculated by convoluting electron and proton equivalent photon fluxes, Φ_e and Φ_p , respectively, with photon-photon cross-section $\sigma_{\gamma\gamma}$:

$$egin{aligned} \sigma_{ep} &= \int \mathrm{d} y_e \mathrm{d} y_p \Phi_e(y_e) \Phi_p(y_p) \sigma_{\gamma \gamma}(W) \ &= \int \mathrm{d} W S_{\gamma \gamma} \sigma_{\gamma \gamma}(W) \,, \end{aligned}$$

where respective photon fractional energies $y_e = E_{\gamma(e)}/E_e$, $y_p = E_{\gamma(p)}/E_p$, and $\gamma\gamma$ luminosity spectrum $S_{\gamma\gamma}$ is equal to flux convolution at photon-photon center-of-mass energy $W = \sqrt{y_e y_p s}$,

$$S_{\gamma\gamma} = \frac{2W}{s} \int_{W^2/s}^1 \frac{dy_e}{y_e} \Phi_e(y_e) \Phi_p(\frac{W^2}{y_es})$$

where $\sqrt{s} = 1.2$ TeV at LHeC.

 \rightarrow notion of $S_{\gamma\gamma}$ is analog to partonic luminosities for hadron-hadron collisions.

Krzysztof Piotrzkowski (AGH)

High energy $\gamma \gamma$ interactions at the LHeC

July 20, 2024

 $\gamma \gamma$ Interactions @LHeC

Photon fluxes for electrons and protons, Φ_e and Φ_p

• It is assumed above that $\sigma_{\gamma\gamma}$ is not sensitive to photon virtualities, so fluxes could be integrated over photon Q^2 :

$$\Phi_{\gamma}(y) = \frac{\alpha}{\pi y} \int \frac{\mathrm{d}Q^2}{Q^2} \left[(1-y) \left(1 - \frac{Q_{\min}^2}{Q^2} \right) F_E(Q^2) + \frac{y^2}{2} F_M(Q^2) \right],$$

where α is the fine-structure constant and F_E , F_M are the electric and magnetic form factors, respectively.

- *Elastic* scattering: For electrons $F_E = F_M = 1$, and for protons, within dipole approximation, $F_M = G_M^2$ and $F_E = (4M_n^2 G_F^2 + Q^2 G_M^2)/(4M_n^2 + Q^2).$
- Inelastic scattering: Proton dissociates into states of invariant mass $M_N > M_{p_I} F_E =$ $\int dx F_2/x$ and $F_M = \int dx F_2/x^3$, where $F_2(x, Q^2)$ is proton structure function and $M_N^2 - M_n^2 = Q^2(1/x - 1).$
- ALLM F₂ parametrization is used, which provides good description of DIS data for kinematical region of $10^{-6} < x < 0.85$ and $0 < Q^2 < 5000$ GeV² [arXiv:hep-ph/9712415] – ALLM is based on fits to experimental data on total $\gamma^{(*)}p$ cross-sections.

Krzysztof Piotrzkowski (AGH)

High energy $\gamma \gamma$ interactions at the LHeC

July 20, 2024

 $\gamma \gamma$ Interactions @LHeC

Luminosity spectrum $S_{\gamma\gamma}$ & its integral $\int dW S_{\gamma\gamma}$

- Integral of $S_{\gamma\gamma}$ represents fraction of *ep* luminosity "available" for $\gamma\gamma$ collisions above some minimal W_0 (assuming constant $\sigma_{\gamma\gamma}$)
- s smaller at LHeC than at LHC is compensated by electron photon flux much larger than proton one $\rightarrow elastic S_{\gamma\gamma}(\text{LHeC}) > S_{\gamma\gamma}(\text{LHC})$ for $W \lesssim 100 \text{ GeV}$!

Figure: (Left) Elastic and inelastic luminosity spectra at the LHeC; (Right) integrated luminosity spectra, $\int dW S_{\gamma\gamma}$, as a function of minimal $\gamma\gamma$ center-of-mass energy W_0 .

Krzysztof Piotrzkowski (AGH)

High energy $\gamma \gamma$ interactions at the LHeC

July 20, 2024

イロト イポト イヨト イヨト

$\gamma\,\gamma$ Highlights

Exclusive two-photon production of pairs of charged particles

• At high energies, *W*-dependence of cross-sections for pair production via $\gamma\gamma$ fusion depends strongly on produced particles' spin: for vector particles (as W^+W^-) $\sigma_{\gamma\gamma}$ is constant, for fermions is falling as W^{-1} and for scalars as W^{-2}

 \rightarrow about 100 000 W boson pairs will produced at LHeC via $\gamma\gamma$ fusion, offering very powerful test-bench for anomalous quartic gauge couplings $\gamma\gamma WW$

 \rightarrow whereas $> 10^8 \tau$ pairs offer unique sensitivities to τ anomalous electric and magnetic moments

 $\gamma\,\gamma$ Highlights

Two-photon exclusive production of supersymmetric pairs

• Exclusive production of pairs of charged supersymmetric particles, via photon-photon fusion, offers exciting potential at LHeC:

Figure: Production at the LHeC of higgsiono pairs via $\gamma\gamma$ fusion – pairs' rapidity distributions.

• Note: very good agreement Lpair vs. Grape ME generators too, with ISR corrections only at $\approx 5\%$

Krzysztof Piotrzkowski (AGH)

High energy $\gamma \gamma$ interactions at the LHeC

July 20, 2024

• LHeC offers unique conditions for studying high energy photon-photon interactions:

 \rightarrow very low event pileup and data streaming allow to measure two-photon exclusive production with high efficiency;

 \rightarrow high efficiency and large photon-photon luminosities make LHeC ideal laboratory for $\gamma\gamma$ physics;

 \rightarrow LHeC provides excellent prospects for studying exclusive two-photon production of lepton pairs, pairs of W and Z bosons, and for searches of charged supersymmetric/BSM particles.

• High energy $\gamma\gamma$ physics at LHeC will significantly enhance its scientific potential.

Krzysztof Piotrzkowski (AGH)

High energy $\gamma \gamma$ interactions at the LHeC

July 20, 2024

Event generators used for high energy photon-photon interactions@LHeC

- Lpair [S. P. Baranov, O. Duenger, H. Shooshtari and J. A. M. Vermaseren, Proceedings, Workshop on Physics at HERA, vol. 3, p. 1478, 1991.].
 - Generator for lepton pair production in lepton-lepton, lepton-hadron and hadron-hadron collisions via two-photon Bethe–Heitler process.
- GRAPE [T. Abe, Comput. Phys. Commun. 136 (2001) 126-147, [arXiv:hep-ph/0012029 [hep-ph]]].
 - ME generator for dilepton production in ep collisions according to EWK matrix elements at tree level (including γ and Z exchanges), simulates also ISR/FSR.
- CepGen [L. Forthomme, Comput. Phys. Commun. 271 (2022) 108225, arXiv:1807.06059 [hep-ph]].
 - Generator of generic central exclusive events for photon-photon physics at the LHC.
 - Integration with Lpair/GRAPE for the electron-proton collision is in progress.
 - CepGen repository can be found in: https://github.com/cepgen/cepgen.

Krzysztof Piotrzkowski (AGH)

High energy $\gamma \gamma$ interactions at the LHeC