

NEXT-HD, a tonne scale detector for neutrinoless double beta

decay searches

2

Neus López March on behalf of the NEXT collaboration - IFIC(UV-CSIC)

uropean Research Council

GENERALITAT

Sensitivity for future generation experiments

To explore the Inverted Hierarchy (IH) region tonne-scale detectors are needed.

For an experiment with background (c): an improvement of a factor 10 in m_{BB} requires a factor of **10000 in isotope mass** (*M*) for the same running time (t). For a background-free experiment: $S(T^{0\nu}_{1/2}) \propto M$

NEXT-HD baseline Concept

The NEXT-HD detector will explore the IH region with a high-pressure electroluminescent (EL) TPC cointaining 1 tonne of Xe enriched at 90% ¹³⁶Xe.

Symmetric TPC detector with two drift regions of 1.5 m and 2.2 m diameter holding **1 tonne a 15 bar.** With a:

1) barrel fiber detector made of wavelength-shifting optical fibers for the energy measurement (PMTs replaced

to reduce background budget)

3

NEXT-HD background

To explore the IH the background index must be < 1 count/tonne/year/ROI

Background sources for the NEXT-HD detector include:

- 1) natural radioactivity in detector materials: ²⁰⁸TI (from ²³⁸U) ²¹⁴Bi (from ²³²Th) gamma-rays
- 2) **Radon** ²²⁰Rn and ²²²Rn diffuse from detector materials or gas system (subdominant)
- 3) Cosmogenic background: from neutron captures on detector materials (dominated by copper isotopes but also plastics and pressure vessel) and ¹³⁶Xe.

Det. system	Acceptan ²⁰⁸ Tl	ce $[10^{-8}]$ ²¹⁴ Bi	Background index [ton ⁻¹ yr ⁻¹ ROI ⁻¹]
Field cage	6.80(90)	6.30(80)	4.25×10^{-3}
Readout planes	6.80(90)	7.80(80)	1.36×10^{-3}
Inner shielding	4.50(70)	1.20(70)	37.23×10^{-3}
Radon (cathode)		0.10(10)	2.72×10^{-3}
Source gas	Accej [10	ptance B 0 ⁻⁵] [to	ackground index on ⁻¹ yr ⁻¹ ROI ⁻¹]
Pure xenon	5 68(17)		113.49×10^{-3}
0.1% ³ He dopi	ing	(17)	11.78×10^{-3}

2) high definition tracking **plane** made of $\sim 10^5$ SiPMs with 5 (or 10) mm spacing, read out by in-vessel **ASICs**

Streched **photo-etched meshes** like the ones in NEXT-100 (parallel-wire grids as alternative solution), more on NEXT-100 see poster #622.

3) gas mixtures: low diffusion (Xe+He4) to improve track resolution [1] and He3 to mitigate cosmogenic backgrounds [2]

First module to be installed at the Laboratorio Subterraneo de Canfranc (LSC), but collaboration open to a multi-modular approach to reach large exposures.

NEXT-HD sensitivity

Considering the total background index and the following experimental parameters for NEXT-HD:

1109 kg 24.6% $0.010 \,\text{keV}^{-1} \,\text{t}^{-1} \,\text{yr}^{-1}$

Effectiveness of cut-based analysis and power in topological analysis in NEXT-HD leads to a background rate of ~ 0.17 count/tonne/year/ROI

 \checkmark In less than 5 years of operation, the NEXT-HD detector could reach a half-life sensitivity of 1.2 x 10²⁷ yr (90% CL)

Towards NEXT-HD and beyond: ongoing R&D

Fiber Barrel R&D

The goal is to demonstrate an overall **photon detection efficiency (PDE)** of 1-2% (NEXT-White PDE is 1.4%) with the barrel fiber detector to maintain the energy resolution better than 1% FWHM and to detect the primary scintillation.

Camera Readout and Ba-Tagging (CRAB)

- High-speed camera tracking is being pursued [5] to develop a detector with barium tagging
- (more in Ba-tagging in poster #909)

Advantages:

- 1) Entire redout system can be outside vessel, improving radiopurity and heat load within the detector 2) Simplified electronics
- 3) Focus from a distance rather than up close, freeing the cathode for Barium Tagging

To validate the technology choice, the HD-DEMO [4] prototype is being built at DIPC with a barrel of WLS fibers covering the surface of the cylinder to detect Xe scintillation light, a symmetric design with a cathode in the middle and two anodes, and a readout using a PMT on one side and a cooled SiPM on the other side.

Optical Readout System:

1) Image intensifier: amplifies light and converts into the visible with a gain of 3000

- 2) Camera: 3D tracks TPX2CAM with 1.6 ns resolution
- 3) Optics needed to focus onto the EL region

2D tracks: Small scale optical TPC demonstrated proof-of-concept with an EMCCD camera coupled to an Image Intesifier

✓ **3D tracks:** Large scale optical TPC using TimePix3 camera, built at Argonne National Lab with first tracks expected soon

[1] <u>Nucl.Instrum.Meth.A 905 (2018) 82-90</u> [2] <u>J.Phys.G 47 (2020) 7, 075001</u> [3] <u>JHEP 2021 (2021) 08, 164</u> [4] <u>JINST 19 (2024) 04, C04042</u> [5] JINST 18 P08006 (2021)