nuSTORM: neutrino physics on the path to the Muon Collider

Paul Bogdan Jurj Imperial College London on behalf of the nuSTORM Collaboration

19 July 2024 | ICHEP 2024 | Prague, Czech Republic

Neutrinos from Stored Muons (nuSTORM)

• nuSTORM facility

- Designed to produce a neutrino flux with %-level precision
- o Muon decays in a racetrack-shaped storage ring
- Based on a muon storage ring
 - $\,\circ\,$ Can be tuned to accept muons with momenta in the 1-6 GeV/c ± 16% range
 - o Stored muons decay into electrons, muon and electron neutrinos

Katori T. YETI2019, IPPP, Durham, UK, Jan. 7, 2019

Scientific programme

Cross section measurements

- %-level precision on the neutrino flux
 - Superior neutrino-nucleus interaction cross-section measurements
- Tunable muon storage ring
 - Neutrino flux can be tuned to the energy spectra of longbaseline neutrino experiments

Beyond Standard Model searches

- Rare processes
 - By combining the precisely known flux with high statistics
- Probe short-baseline neutrino oscillations
 - High-sensitivity sterile neutrino searches

Muon Collider testbed

- Muon storage ring
 - Great potential to serve as a testbed for technologies essential for the Muon Collider

Neutrinos from Stored Muons (nuSTORM)

Muon Collider

Adapted from M. A. Palmer, "The US Muon Accelerator Program", in Proc. IPAC'14, DOI: 10.18429/JACoW-IPAC2014-TUPME012

Progress overview

- A CERN siting has been investigated (nuSTORM, CERN-PBC-REPORT-2019-003)
- Simulation-driven optimisation studies in progress at multiple subsystems of the facility
- Identified opportunities for synergies with a Muon Collider R&D programme

CERN-PBC-REPORT-2019-003; DOI:10.17181/CERN.FQTB.08QN

Potential siting of nuSTORM at CERN

Pion production and transport

Target & horn

- Current iteration tailored for using protons from the CERN SPS or PS
- Optimised for 5 GeV/c pions
- Ongoing FLUKA studies to optimise the capture of low-energy pions (e.g. using a second horn)

Pion transport line

- Transfers the pions from the target to the storage ring
- Design validated in a tracking study using Beam Delivery Simulation (BDSIM) software
 - BDSIM implementation extended to include the production straight section of the ring, to study muon production

Storage ring

- Ring designed to have large dynamic and momentum acceptances
 - 1 mm rad and ± 16%
 - Arcs and the return straight Fixed Field Alternating Gradient (FFA) lattice
 - o Production straight conventional FODO lattice, to maximise muon capture efficiency
- v energy spectrum determined from the ring optics
- Ring instrumentation precise beam intensity measurements
- Full BDSIM implementation of the ring currently in progress

Muon production (BDSIM)

- Pions tracked in BDSIM from horn to the end of the production straight
 - Study muons that reach the end of the production straight
- Baseline design ring accepts muons with a mean momentum:

 $p_{\mu} = 0.76 p_{\pi}$

- Optimised for 3.8 GeV/c muons / 5 GeV/c pions
- Chosen to avoid overlap between the target muon momenta and the momenta of the undecayed pions
- At lower momenta double peak feature, with the valley near the target muon momentum
 - o Decreased muon capture efficiency
 - Cause: due to a lower Lorentz boost, decayed muons with significant transverse momentum have a larger divergence and are lost in the accelerator apertures

Muon production optimisation (BDSIM)

- Mitigation
 - Consider accepting muons from either the forward or backward peaks
- Observed improvements in the capture efficiency of 1 GeV/c muons (after normalising to number of protons on target)
 - \circ Backward peak: ×2
 - \circ Forward peak: ×6
- Study currently expanded at all stored muon momenta of interest

8

Simulated neutrino fluxes (nuSIM)

R. Kamath, P. Kyberd, K. Long

- **NuSIM** Python framework for fast simulation of the nuSTORM neutrino spectrum
- The code can take a FLUKA pion distribution as input and simulate the neutrino spectrum at the detector
- Figure: muon and electron neutrino spectra for four stored muon central momenta
 - Produced using the baseline ring configuration $(p_{\mu} = 0.76 p_{\pi})$

P. B. Jurj | 19 July 2024 | ICHEP 2024

Synthetic beams at nuSTORM

- Similar concept to the PRISM technique of DUNE and HyperK, which exploit the movement of near-detectors off-axis
- nuSTORM: detector always on-axis, but can linearly combine fluxes from different stored-muon momenta
- Toy study using fluxes from 8 muon momenta: synthetic beam narrower and more Gaussian
 - Neutrino peak energy of 2.5 GeV, with 0.5 GeV SD can be obtained
 - Large reduction in FWHM compared to neutrinos from muons at 7 GeV/c pion setting

Synthetic beams at nuSTORM

- Synthetised ν_e and ν_μ beams using fluxes from 4 muon momenta
- Narrower beam may be achieved with more flux components
- Uniquely, "quasi mono-energetic" electron-neutrino beams can be synthetised @ nuSTORM

Muon accelerator testbed

- nuSTORM will provide the world's highest power stored muon beam
- Opportunity to develop and test technologies critical to the progress towards a Muon Collider
 - **FFA** technology has applications for muon fast acceleration and is an attractive option for muon collider
 - o Instrumentation for muon-beam monitoring
- Same muon production mechanism as the Muon Cooling Demonstrator
 - Opportunity to share the target complex

F. J. Saura Esteban et al., "Muon Collider Graphite Target Studies and Demonstrator Layout Possibilities at CERN", in Proc. IPAC'22, DOI: 10.18429/JACoW-IPAC2022-THPOTK052

- Multiple optimisation studies in progress
 - Focus on improving the neutrino production efficiency at low energies
- Synthetic beams are being investigated
 - o Preliminary results show narrower neutrino fluxes can be produced

Creating a synthetic beam

R. Kamath

- For each muon momentum setting p_{μ} , a neutrino flux is obtained $\phi_i(E_{\nu})$
- One can weight each spectrum with a coefficient c_i and can create a linear combination of multiple fluxes as follows:

$$\Phi_{LC}(E_{\nu}) = \sum_{i}^{N_{\mu}} c_i \phi_i(E_{\nu})$$

• Coefficient optimisation carried out using the following Figure of Merit (FOM):

$$FOM = \sum_{E_{\nu}} \frac{(f(E_{\nu}) - \Phi_{LC}(E_{\nu}))^2}{A + Bf(E_{\nu})^2}$$

- Parameters A and B can be tuned to change the weighting of the chi-sq fit by the flux in each bin
- A constraint that $\Phi_{LC} > 0$ for all $E_{V_{C}}$ may be added