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Strongly coupled dynamics: outlook

@ Important physical examples of gauge fields are realised
in Nature (QCD and electroweak interactions)

@ Non-perturbative QCD phenomena are far from being understood
(e.g. quark confinement, mass gap, QCD phase transitions,
hot/dense QCD phenomena etc)

@ Non-abelian gauge (Yang-Mills) fields are present in most of UV completions
of the Standard Model (e.g. GUTs, string/EDs compactifications etc)

@ Confining dark Yang-Mills sectors are often considered as a possible
source of Dark Matter in the Universe (e.g. dark glueballs)

@ Pure gluons
= confinement-deconfinement phase transition

@ Gluons + fermions

—> o Fermions in fundamental representation =chiral phase transitior
e Fermions in adjoint rep. = confinement & chiral phase transition
e Fermions in 2-index symmetric rep. = confinement & chiral phase transition




Polyakov Loop Model for pure gluons |

Pisarski first proposed the Polyakov-loop Model as an effective field
theory to describe the confinement-deconfinement phase transition of
SU(N) gauge theory (Pisarski, PRD 62 (2000) 111501).

In a local SU(N) gauge theory, a global center symmetry Z(/V) is used to
distinguish confinement phase (unbroken phase) and deconfinement
phase (broken phase)

An order parameter for the Z(N) symmetry is constructed using the
Polyakov Loop (thermal Wilson line) (Polyakov, PLB 72 (1978) 477)

/T
L(Z) = Pexp z/ Ayg(Z,7)dr
0

The symbol P denotes path ordering and A, is the Euclidean temporal
component of the gauge field

The Polyakov Loop transforms like an adjoint field under local SU(N)
gauge transformations



Polyakov Loop Model for pure gluons Il

Convenient to define the trace of the Polyakov loop as an order
parameter for the Z(IN) symmetry
1

l (f) — NTIC[L] ;

where Tr. denotes the trace in the colour space.

Under a global Z (V) transformation, the Polyakov loop ¢ transforms as a
field with charge one
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The expectation value of 7 i.e. < ¢ > has the important property:
() =0 (T < T, Confined); (¢) >0 (T > T, Deconfined)

At very high temperature, the vacua exhibit a N —fold degeneracy:
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where ¢, is defined to be real and ¢y — 1 as T' — oo



Effective PLM potential

e The simplest effective potential preserving the Z symmetry in the
polynomial form is given by (Pisarski, PRD 62 (2000) 111501)

b2(T')
2

T, To\° o \° o \*
where bQ(T):ao+a1<79> | a2<TO> +a3<%> +a4<%>

“..." represent any required lower dimension operator than ¢% i.e.
(00%)* = |¢|?*with 2k < N.
® Forthe SU(3) case, there is also an alternative logarithmic form

Vi =1 (— 02+ bal)t + - — b (Y + W))

2

a(T) = ao + ay (%) + as (%)z + as (%)3 b(T) = by (%)3

o The qa;, b; coefficients in VFEFL",f,'ly) and VP(E,'\;’Q) are determined by fitting the
lattice results

o T
yi2los) — p <_ a(T) €2+ b(T) In(1 — 6]¢|* + 4(£*3 4 £3) — 3\@\4))



Fitting the PLM potential to the lattice data

Lattice data
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Including fermions: the PQM model

B. Schaefer, J. Pawlowski, . Wambach PRD 76 (2007) 074023
B. Schaefer, M. Wagner, PPNP 62 (2009) 391
RP, Reichert, Sannino and Wang, JHEP 02 (2024) 159

The Polyakov quark meson model (PQM) is widely used as an effective
theory to study the first order chiral phase transition

The Lagrangian of the PLSM where mesons couple to a spatially
constant temporal background gauge field reads

. . a 1 1
L=G(iP—g(o+irTT)) g+ = (0,0)° + 5 (9u7a)

2 2
ol .
- VPSII)JMY) + VLSM - Vmedium 7Where E — ’)/,uau — Z’}/()AO

Vism under symmetry SU(Ny) x SU(Ny) with N flavours reads

Vism = % (Ao — Aa) Tr[@T®]” + %AaTr TPDTD] — m*Tr[ 0T @]

— 22NN /72 ¢ (det @' + det ®)
where the meson field @ is a Ny x N, matrix defined as
1

o = N (0 +in" ) I + (aq + im,) T, I = identity matrix
f




Thermal corrections: the CJT Method

J. Cornwall, R. Jackiw, E. Tomboulis PRD 10 (1974) 2428
G. Amelino-Camelia, PRD 47 (1993) 2356
RP, Reichert, Sannino and Wang, JHEP 02 (2024) 159

@ Cornwall, Jackiw and Tomboulis (CJT) first proposed a generalized
effective action I' (¢, G) of composite operators, where the effective
action not only depends on ¢(x) but also on the propagator G(x, y)

® The effective action becomes the generating functional of the two-particle
irreducible (2P1) vacuum graphs rather than the conventional 1Pl
diagrams

® The CJT method is equivalent to summing up the infinite class of “daisy"
and “super daisy" graphs and is thus useful in studying such strongly
coupled models beyond mean-field approximation

¢ The PQM with the CJT method compared to other model computations
such as holography and the PNJL model, can bridge perturbative and
non-perturbative regimes of the effective theory



First-order phase transitions and bubble’s nucleation

In a first-order phase transition, the transition occurs via bubble
nucleation and it is essential to compute the nucleation rate

The tunnelling rate due to thermal fluctuations from the metastable
vacuum to the stable one is suppressed by the three-dimensional
Euclidean action Ss5(7T)

3/2
iy = (S0 s
27T

The generic three-dimensional Euclidean action reads

o0 1 d 2
Sy(T) = dr [ drr? {— (d—p) + Var(p, T)

Y

0 2

where p denotes a generic scalar field with mass dimension one, [p] =1

The phase-transition temperature T, is often identified with the nucleation
temperature T,, defined as the temperature where the rate of bubble
nucleation per Hubble volume and time is order one: I'/H* ~ O(1)

More accurately, we can use percolation temperature 7,: the temperature
at which 34% of false vacuum is converted

For sufficiently fast phase transitions, the decay rate is approximated by:

T(T) ~ I'(t,)ePt—t)



Phase transition characteristics

PRD 104 (2021) 035005

The inverse duration time then follows as Huang, Reichert, Sannino, Wang
5= d S3(T)
oAt T,

The dimensionless version (3 is defined relative to the Hubble parameter
H, at the characteristic time t,

B _ . d S(T)
H, d7" T

B =

,

T=T.,

where we used that d7'/dt = —H(T)T.

We define the strength parameter o from the trace of the
energy-momentum tensor 6 weighted by the enthalpy

1A 1Ae — 3Ap
—?)’UJ_|__3 W ’

o AX =XE) — X for X = (6, e,p)

(+) denotes the meta-stable phase (outside of the bubble) while (—)
denotes the stable phase (inside of the bubble).

The relations between enthalpy w, pressure p, and energy e are given by

w — P, P

T OInT’ OlnT
Tew IS SUpPpPressed for large 8 occurring often in strongly coupled sectors

ap ap () _ _V(i)

eff
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Gravitational wave spectrum: an outlook
C. Caprini et al., JCAP 03, 024,

1910.13125
@ Contributions from bubble collision and turbulence are subleading
The GW spectrum from sound waves is given by
7
3 21 2
4 3 f
rout — o (L) [0 (1)
GW(f) GW f peak 7 7 f peak
@ The peak frequency
s T 3
~19-10"°H (g*) -
Jpeac = 1.9 1077 Hz (1755 (1ooaev) (vw>
@ The peak amplitude
2 1
_ w sSw 100 \3 Prad,dark
K208 ~ 2,65 . 106 (”—) (“ O‘) ( ) 02 Qqark = 2%
GW B 1+ a s dark dark Drad.tof
@ The factor Q3 accounts for the dilution of the GWs by the
non-participating SM d.o.f.
@ The efficiency factor for the sound waves kg, consist of x,, as well as an
additional suppression due to the length of the sound-wave period 7g,
(877)%%, Va
—_ ~ — f ]_ /{,U U,w = v —
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where U is the root-mean-square fluid velocity U7 ~



Phase diagram and gravitational waves in the PQM model
RP, Reichert, Sannino and Wang, JHEP 02 (2024) 159
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The strongest signal we found can almost reach the LISA sensitivity 19



Summary:

We developed a new approach based upon the well-established thermal EFT
and the existing lattice results to explore phase structure and PTs in
confining gauge theories incorporating confinement effects and non-
perturbative self-interactions

We analysed the phase transitions in the Polyakov-loop extended LSM
utilising the CJT method and computed the resulting primordial
gravitational wave spectra showcasing an enhancement for weak sigma self-
interactions and light sigma meson

0.10 | |
Inclusion of the Polyakov loop enhances {— LSM
the strength of the chiral phase transition oosf PLSM |-
compared to LSM [Nf — }
0.06 |- =
3
The PLSM represents an important framework ooal 7 S LTIUPT s N
for analysis of various cosmological implications \ - |
of strongly coupled dynamics in consistency 0.02 | — ]
with lattice simulations \ | | |
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