Soft Off-Shell Recursion Relations for Pions

[2401.04731], [24xx.xxxx] CB, Karol Kampf, Jiří Novotný, Jaroslav Trnka

• Non-linear Sigma Model (NLSM) amplitudes A_n for pions π have been studied from many points of view:

- Non-linear Sigma Model (NLSM) amplitudes A_n for pions π have been studied from many points of view:
	- ▶ CHY Formulation

- Non-linear Sigma Model (NLSM) amplitudes A_n for pions π have been studied from many points of view:
	- ▶ CHY Formulation
	- ▶ CK Duality & BCJ Double Copy

- Non-linear Sigma Model (NLSM) amplitudes A_n for pions π have been studied from many points of view:
	- ▶ CHY Formulation
	- ▶ CK Duality & BCJ Double Copy
	- ▶ Soft Behavior (Adler Zero):

$$
A_n \xrightarrow{p_i \to 0} 0
$$

- Non-linear Sigma Model (NLSM) amplitudes A_n for pions π have been studied from many points of view:
	- ▶ CHY Formulation
	- ▶ CK Duality & BCJ Double Copy
	- ▶ Soft Behavior (Adler Zero):

$$
A_n \xrightarrow{p_i \to 0} 0
$$

 \rightarrow enabled on-shell (BCFW-like) recursion relations for tree amplitudes. Cheung et.al. [1509.03309]

- Non-linear Sigma Model (NLSM) amplitudes A_n for pions π have been studied from many points of view:
	- ▶ CHY Formulation
	- ▶ CK Duality & BCJ Double Copy
	- ▶ Soft Behavior (Adler Zero):

$$
A_n \xrightarrow{p_i \to 0} 0
$$

- → enabled on-shell (BCFW-like) recursion relations for tree amplitudes. Cheung et.al. [1509.03309]
- **o** In this talk:

- Non-linear Sigma Model (NLSM) amplitudes A_n for pions π have been studied from many points of view:
	- ▶ CHY Formulation
	- ▶ CK Duality & BCJ Double Copy
	- ▶ Soft Behavior (Adler Zero):

$$
A_n \xrightarrow{p_i \to 0} 0
$$

- \rightarrow enabled on-shell (BCFW-like) recursion relations for tree amplitudes. Cheung et.al. [1509.03309]
- **o** In this talk:

Formulate efficient *cubic* off-shell (BG-like) recursion relations at tree- and loop-level.

- Non-linear Sigma Model (NLSM) amplitudes A_n for pions π have been studied from many points of view:
	- ▶ CHY Formulation
	- ▶ CK Duality & BCJ Double Copy
	- ▶ Soft Behavior (Adler Zero):

$$
A_n \xrightarrow{p_i \to 0} 0
$$

- \rightarrow enabled on-shell (BCFW-like) recursion relations for tree amplitudes. Cheung et.al. [1509.03309]
- **o** In this talk:

Formulate efficient *cubic* off-shell (BG-like) recursion relations at tree- and loop-level.

 \rightarrow Soft Factor Expansion (SFE) of pion amplitudes.

• Closer inspection of Adler Zero reveals hidden structure in soft limit. Cachazo etal. [1604.03893] Taking $p_i \to \lambda p_i$ and then $\lambda \to 0$ yields

$$
A_n \xrightarrow{\lambda \to 0} \lambda \sum_j s_{ij} M_{n-1}^{3\phi(j)} + \mathcal{O}(\lambda^2),
$$

• Closer inspection of Adler Zero reveals hidden structure in soft limit. Cachazo etal. [1604.03893] Taking $p_i \to \lambda p_i$ and then $\lambda \to 0$ yields

$$
A_n \xrightarrow{\lambda \to 0} \lambda \sum_j s_{ij} M_{n-1}^{3\phi(j)} + \mathcal{O}(\lambda^2),
$$

where $s_{ij}\!=\!(p_i+p_j)^2$ and $M_{n-}^{3\phi}$ $\frac{3\phi}{n-1}$ are mixed amplitudes in extended theory (NLSM + ϕ^3) coupling bi-adjoint scalars ϕ to pions π .

• Closer inspection of Adler Zero reveals hidden structure in soft limit. Cachazo etal. [1604.03893] Taking $p_i \to \lambda p_i$ and then $\lambda \to 0$ yields

$$
A_n \xrightarrow{\lambda \to 0} \lambda \sum_j s_{ij} M_{n-1}^{3\phi(j)} + \mathcal{O}(\lambda^2),
$$

where $s_{ij}\!=\!(p_i+p_j)^2$ and $M_{n-}^{3\phi}$ $\frac{3\phi}{n-1}$ are mixed amplitudes in extended theory (NLSM + ϕ^3) coupling bi-adjoint scalars ϕ to pions π .

• Recently: Mixed amplitudes appear in *hidden factorization* of NLSM amplitudes close to special kinematic points Arkani-Hamed et. al. [2312.16282]. E.g.

$$
A_n \xrightarrow{s_{13}=s_{14}=\cdots=s_{1n-2}=0} A_4 \times M_3^{3\phi} \times M_{n-1}^{3\phi}
$$

• Closer inspection of Adler Zero reveals hidden structure in soft limit. Cachazo etal. [1604.03893] Taking $p_i \to \lambda p_i$ and then $\lambda \to 0$ yields

$$
A_n \xrightarrow{\lambda \to 0} \lambda \sum_j s_{ij} M_{n-1}^{3\phi(j)} + \mathcal{O}(\lambda^2),
$$

where $s_{ij}\!=\!(p_i+p_j)^2$ and $M_{n-}^{3\phi}$ $\frac{3\phi}{n-1}$ are mixed amplitudes in extended theory (NLSM + ϕ^3) coupling bi-adjoint scalars ϕ to pions π .

• Recently: Mixed amplitudes appear in *hidden factorization* of NLSM amplitudes close to special kinematic points Arkani-Hamed et. al. [2312.16282]. E.g.

$$
A_n \xrightarrow{s_{13}=s_{14}=\cdots=s_{1n-2}=0} A_4 \times M_3^{3\phi} \times M_{n-1}^{3\phi}
$$

Since amplitudes $M_n^{3\phi}$ are everywhere: can we use them to ${\bf computer}$ pion amplitudes?

Scalar amplitudes are rational functions of Lorentz-invariants

$$
X_{ij} = (p_i + p_{i+1} + \dots + p_{j-1})^2 = s_{i,j-1},
$$
 $X_{i,i+1} = p_i^2 = 0,$ $X_{ij} = X_{ji}.$

Scalar amplitudes are rational functions of Lorentz-invariants

$$
X_{ij} = (p_i + p_{i+1} + \dots p_{j-1})^2 = s_{i,j-1},
$$
 $X_{i,i+1} = p_i^2 = 0,$ $X_{ij} = X_{ji}.$

• Simplest NLSM amplitudes:

$$
A_4 = X_{13} + X_{24}, \qquad A_6 = \frac{(X_{13} + X_{24})(X_{46} + X_{15})}{X_{14}} - X_{13} + \text{cyc}.
$$

Scalar amplitudes are rational functions of Lorentz-invariants

$$
X_{ij} = (p_i + p_{i+1} + \dots p_{j-1})^2 = s_{i,j-1},
$$
 $X_{i,i+1} = p_i^2 = 0,$ $X_{ij} = X_{ji}.$

• Simplest NLSM amplitudes:

$$
A_4 = X_{13} + X_{24}, \qquad A_6 = \frac{(X_{13} + X_{24})(X_{46} + X_{15})}{X_{14}} - X_{13} + \text{cyc}.
$$

• Consider A_n not as functions of momenta $\{p_i\}$ but directly as functions of X-variables,

$$
A_n = A_n(X_{ij}).
$$

Scalar amplitudes are rational functions of Lorentz-invariants

$$
X_{ij} = (p_i + p_{i+1} + \dots p_{j-1})^2 = s_{i,j-1},
$$
 $X_{i,i+1} = p_i^2 = 0,$ $X_{ij} = X_{ji}.$

• Simplest NLSM amplitudes:

$$
A_4 = X_{13} + X_{24}, \qquad A_6 = \frac{(X_{13} + X_{24})(X_{46} + X_{15})}{X_{14}} - X_{13} + \text{cyc}.
$$

• Consider A_n not as functions of momenta $\{p_i\}$ but directly as functions of X-variables,

$$
A_n = A_n(X_{ij}).
$$

• Equivalently think of A_n as functions of labels,

$$
A_n = A_n(123\dots n-1 n).
$$

Soft Limit in X-variables

• At level of X-variables define soft limit (e.g. $p_n \to 0$) as formal replacement of labels

$$
p_n \to 0 \ \simeq \ X_{in} \mapsto X_{1i},
$$

i.e. simply mapping $n \mapsto 1$.

Soft Limit in X-variables

• At level of X-variables define soft limit (e.g. $p_n \to 0$) as formal replacement of labels

$$
p_n \to 0 \ \simeq \ X_{in} \mapsto X_{1i},
$$

i.e. simply mapping $n \mapsto 1$.

This yields the label soft limit of the amplitude

$$
A_n(12\dots n-1n) \xrightarrow{n\mapsto 1} A_n(12\dots n-11)
$$

Soft Limit in X-variables

At level of X-variables define soft limit (e.g. $p_n \to 0$) as formal replacement of labels

$$
p_n \to 0 \ \simeq \ X_{in} \mapsto X_{1i},
$$

i.e. simply mapping $n \mapsto 1$.

• This yields the label soft limit of the amplitude

$$
A_n(12\ldots n-1n) \xrightarrow{n\mapsto 1} A_n(12\ldots n-11)
$$

• Ex.: At 6 points,

$$
A_6(123456) \xrightarrow{6 \mapsto 1} -X_{15}M_5^{3\phi}(12345) -X_{12}M_5^{3\phi}(23451)
$$

= $A_6(123451)$,

where
$$
M_5^{3\phi}(1^{\phi}2^{\pi}3^{\pi}4^{\phi}5^{\phi}) = 1 - \frac{X_{13} + X_{24}}{X_{14}} - \frac{X_{24} + X_{35}}{X_{25}}
$$
.

Label Soft Theorem at n Points

• Generally, at n -points, we find the label soft theorem,

$$
A_n(1 \dots n) \xrightarrow{n \mapsto 1} -X_{1,n-1} M_{n-1}^{3\phi}(1 \dots n-1) -X_{12} M_{n-1}^{3\phi}(2 \dots n-11)
$$

= $A_n(12 \dots n-11)$

with mixed 3ϕ amplitudes $M_n^{3\phi}(1^{\phi}2^{\pi}3^{\pi}\ldots n{-}2^{\pi}n{-}1^{\phi}n^{\phi}).$

Label Soft Theorem at n Points

• Generally, at n -points, we find the label soft theorem,

$$
A_n(1 \dots n) \xrightarrow{n \mapsto 1} -X_{1,n-1} M_{n-1}^{3\phi}(1 \dots n-1) -X_{12} M_{n-1}^{3\phi}(2 \dots n-11)
$$

= $A_n(12 \dots n-11)$

with mixed 3ϕ amplitudes $M_n^{3\phi}(1^{\phi}2^{\pi}3^{\pi}\ldots n{-}2^{\pi}n{-}1^{\phi}n^{\phi}).$

• Suggests to decompose the amplitude as

$$
A_n(1 \dots n) = -X_{1,n-1} M_{n-1}^{3\phi}(1 \dots n-1) - X_{2n} M_{n-1}^{3\phi}(2 \dots n-n) + R_n
$$

Label Soft Theorem at n Points

• Generally, at n -points, we find the label soft theorem,

$$
A_n(1 \dots n) \xrightarrow{n \mapsto 1} -X_{1,n-1} M_{n-1}^{3\phi}(1 \dots n-1) -X_{12} M_{n-1}^{3\phi}(2 \dots n-11)
$$

= $A_n(12 \dots n-11)$

with mixed 3ϕ amplitudes $M_n^{3\phi}(1^{\phi}2^{\pi}3^{\pi}\ldots n{-}2^{\pi}n{-}1^{\phi}n^{\phi}).$

• Suggests to decompose the amplitude as

$$
A_n(1 \dots n) = -X_{1,n-1} M_{n-1}^{3\phi}(1 \dots n-1) - X_{2n} M_{n-1}^{3\phi}(2 \dots n-n) + R_n
$$

• Remainder function R_n crucially satisfies

$$
R_n(12\ldots n) \xrightarrow{n\mapsto 1} 0.
$$

Structure of Remainder Function

To make soft limit $R_n \stackrel{n \mapsto 1}{\longrightarrow} 0$ automatic can write

$$
R_n = \sum_{k=3}^{n-2} S_{n,k} C_{n,k}.
$$

Structure of Remainder Function

To make soft limit $R_n \stackrel{n \mapsto 1}{\longrightarrow} 0$ automatic can write

$$
R_n = \sum_{k=3}^{n-2} S_{n,k} C_{n,k}.
$$

• The soft factors

$$
S_{n,k} = X_{1k} - X_{kn},
$$

manifestly vanish $S_{n,k} \overset{n\mapsto 1}{\longrightarrow} 0$ for all $k.$

Structure of Remainder Function

To make soft limit $R_n \stackrel{n \mapsto 1}{\longrightarrow} 0$ automatic can write

$$
R_n = \sum_{k=3}^{n-2} S_{n,k} C_{n,k}.
$$

• The soft factors

$$
S_{n,k} = X_{1k} - X_{kn},
$$

manifestly vanish $S_{n,k} \overset{n\mapsto 1}{\longrightarrow} 0$ for all $k.$

• Coefficients $C_{n,k}$ are given in terms of lower-point NLSM and mixed amplitudes,

$$
C_{n,k} = \begin{cases} \frac{1}{X_{1k}} A_k(1 \dots k) M_{n-k+2}^{3\phi}(k \dots n), & \text{if } k \text{ even,} \\ -\frac{1}{X_{kn}} M_k^{3\phi}(1 \dots k) A_{n-j+2}(k \dots n), & \text{if } k \text{ odd.} \end{cases}
$$

• Plugging in yields all-order formula for NLSM amplitudes

$$
A_n = -X_{1,n-1}M_{n-1}^{3\phi}(1...n-1) - X_{2n}M_{n-1}^{3\phi}(2...n-n)
$$

 $+ R_n$

• Plugging in yields all-order formula for NLSM amplitudes

$$
A_n = -X_{1,n-1}M_{n-1}^{3\phi}(1 \dots n-1) - X_{2n}M_{n-1}^{3\phi}(2 \dots n-n)
$$

+
$$
\sum_{j=2}^{\frac{n-2}{2}} \left\{ \frac{S_{n,2j}}{X_{1,2j}} A_{2j}(1 \dots 2j) M_{n-2j+1}^{3\phi}(2j \dots n-1 n) + \frac{\bar{S}_{n,2j+1}}{X_{2j+1,n}} M_{2j+1}^{3\phi}(1 \dots 2j+1) A_{n-2j}(2j+1 \dots n) \right\},
$$

with
$$
\bar{S}_{n,j} \equiv -S_{n,j}
$$
.

• Plugging in yields all-order formula for NLSM amplitudes

$$
A_n = -X_{1,n-1}M_{n-1}^{3\phi}(1 \dots n-1) - X_{2n}M_{n-1}^{3\phi}(2 \dots n-n)
$$

+
$$
\sum_{j=2}^{n-2} \left\{ \frac{S_{n,2j}}{X_{1,2j}} A_{2j}(1 \dots 2j) M_{n-2j+1}^{3\phi}(2j \dots n-1 n) + \frac{\bar{S}_{n,2j+1}}{X_{2j+1,n}} M_{2j+1}^{3\phi}(1 \dots 2j+1) A_{n-2j}(2j+1 \dots n) \right\},
$$

with $\bar{S}_{n,j} \equiv -S_{n,j}$. → Soft Factor Expansion (SFE)

• Plugging in yields all-order formula for NLSM amplitudes

$$
A_n = -X_{1,n-1}M_{n-1}^{3\phi}(1 \dots n-1) - X_{2n}M_{n-1}^{3\phi}(2 \dots n-n)
$$

+
$$
\sum_{j=2}^{n-2} \left\{ \frac{S_{n,2j}}{X_{1,2j}} A_{2j}(1 \dots 2j) M_{n-2j+1}^{3\phi}(2j \dots n-1 n) + \frac{\bar{S}_{n,2j+1}}{X_{2j+1,n}} M_{2j+1}^{3\phi}(1 \dots 2j+1) A_{n-2j}(2j+1 \dots n) \right\},
$$

with $\bar S_{n,j}\equiv -S_{n,j}$. $\qquad\rightarrow$ Soft Factor Expansion (SFE) • Efficiently packages amplitude into $\mathcal{O}(n)$ terms.

[Soft Off-Shell Recursion Relations for Pions](#page-0-0) | Christoph Bartsch | ICHEP2024, Prague 7

• Plugging in yields all-order formula for NLSM amplitudes

$$
A_n = -X_{1,n-1}M_{n-1}^{3\phi}(1 \dots n-1) - X_{2n}M_{n-1}^{3\phi}(2 \dots n-n)
$$

+
$$
\sum_{j=2}^{\frac{n-2}{2}} \left\{ \frac{S_{n,2j}}{X_{1,2j}} A_{2j}(1 \dots 2j) M_{n-2j+1}^{3\phi}(2j \dots n-1 n) + \frac{\bar{S}_{n,2j+1}}{X_{2j+1,n}} M_{2j+1}^{3\phi}(1 \dots 2j+1) A_{n-2j}(2j+1 \dots n) \right\},
$$

with $\bar S_{n,j}\equiv -S_{n,j}$. $\qquad\rightarrow$ Soft Factor Expansion (SFE)

- Efficiently packages amplitude into $\mathcal{O}(n)$ terms.
- Manifests label soft theorem (\Leftrightarrow Adler Zero) term by term for $p_n \rightarrow 0$.

• Soft Factor Expansion: (SFE)

$$
A_n = -X_{1,n-1}M_{n-1}^{3\phi} - X_{2n}M_{n-1}^{3\phi} + R_n,
$$

\n
$$
R_n = \sum_{j=2}^{\frac{n-2}{2}} \left\{ \frac{S_{n,2j}}{X_{1,2j}} A_{2j} \times M_{n-2j+1}^{3\phi} + \frac{\bar{S}_{n,2j+1}}{X_{2j+1,n}} M_{2j+1}^{3\phi} \times A_{n-2j} \right\}.
$$

• Observation: R_n takes form of cubic vertex expansion,

Effective cubic vertices:

$$
\overline{1} \qquad \overline{S} \cdots \overline{S}^{2j} = S_{n,2j} X_{2j,n}, \qquad \overline{1} \qquad \overline{S} \cdots \overline{S}^{2j+1} = \overline{S}_{n,2j+1} X_{1,2j+1}.
$$

[Soft Off-Shell Recursion Relations for Pions](#page-0-0) | Christoph Bartsch | ICHEP2024, Prague

SFE for pions can be completed into recursion relation provided we can calculate mixed amplitudes $M_n^{3\phi}$.

SFE for pions can be completed into recursion relation provided we can calculate mixed amplitudes $M_n^{3\phi}$. And we can:

SFE for pions can be completed into recursion relation provided we can calculate mixed amplitudes $M_n^{3\phi}$. And we can:

$$
M_n^{3\phi}(1 \dots n) = \frac{1}{X_{1,n-1}} A_{n-1}(1 \dots n-1) + \frac{1}{X_{2n}} A_{n-1}(2 \dots n-1 n) + R_n
$$

SFE for pions can be completed into recursion relation provided we can calculate mixed amplitudes $M_n^{3\phi}$. And we can:

$$
M_n^{3\phi}(1 \dots n) = \frac{1}{X_{1,n-1}} A_{n-1}(1 \dots n-1) + \frac{1}{X_{2n}} A_{n-1}(2 \dots n-1 n) + R_n
$$

• Remainder function R_n again admits cubic vertex expansion,

SFE for pions can be completed into recursion relation provided we can calculate mixed amplitudes $M_n^{3\phi}$. And we can:

$$
M_n^{3\phi}(1 \dots n) = \frac{1}{X_{1,n-1}} A_{n-1}(1 \dots n-1) + \frac{1}{X_{2n}} A_{n-1}(2 \dots n-1 n) + R_n
$$

• Remainder function R_n again admits cubic vertex expansion,

[Soft Off-Shell Recursion Relations for Pions](#page-0-0) | Christoph Bartsch | ICHEP2024, Prague

• Combining SFE for NLSM and cubic vertex expansion (CVE) for 3ϕ amplitudes gives cubic recursion relations.

• Combining SFE for NLSM and cubic vertex expansion (CVE) for 3ϕ amplitudes gives cubic recursion relations.

$$
1 = M_3^{3\phi} \xrightarrow{\text{SFE}} A_4 \xrightarrow{\text{CVE 3\phi}} M_5^{3\phi} \xrightarrow{\text{SFE}} A_6 \longrightarrow \dots
$$

• Combining SFE for NLSM and cubic vertex expansion (CVE) for 3ϕ amplitudes gives cubic recursion relations.

Only input required: 3-point amplitude $M_3^{3\phi}$ $\frac{3\varphi}{3}$,

$$
1 = M_3^{3\phi} \xrightarrow{\text{SFE}} A_4 \xrightarrow{\text{CVE-3}\phi} M_5^{3\phi} \xrightarrow{\text{SFE}} A_6 \longrightarrow \dots
$$

• Highly efficient: each step requires summing only $\mathcal{O}(n)$ terms.

• Combining SFE for NLSM and cubic vertex expansion (CVE) for 3ϕ amplitudes gives cubic recursion relations.

$$
1 = M_3^{3\phi} \xrightarrow{\text{SFE}} A_4 \xrightarrow{\text{CVE-3}\phi} M_5^{3\phi} \xrightarrow{\text{SFE}} A_6 \longrightarrow \dots
$$

- Highly efficient: each step requires summing only $\mathcal{O}(n)$ terms.
- Analogous to cubic Berends-Giele recursion relations for tr ϕ^3 -theory amps. m_n ,

$$
m_n \simeq \sum_j \left[\underbrace{m}_{n} \left(\underbrace{m}_{n} \right) + \left[\underbrace{m}_{n} \left(\underbrace{m}_{n} \right) \right] \underbrace{m}_{n}
$$

• Combining SFE for NLSM and cubic vertex expansion (CVE) for 3ϕ amplitudes gives cubic recursion relations.

$$
1 = M_3^{3\phi} \xrightarrow{\text{SFE}} A_4 \xrightarrow{\text{CVE-3}\phi} M_5^{3\phi} \xrightarrow{\text{SFE}} A_6 \longrightarrow \dots
$$

- Highly efficient: each step requires summing only $\mathcal{O}(n)$ terms.
- Analogous to cubic Berends-Giele recursion relations for tr ϕ^3 -theory amps. m_n ,

• Combining SFE for NLSM and cubic vertex expansion (CVE) for 3ϕ amplitudes gives cubic recursion relations.

$$
1 = M_3^{3\phi} \xrightarrow{\text{SFE}} A_4 \xrightarrow{\text{CVE-3}\phi} M_5^{3\phi} \xrightarrow{\text{SFE}} A_6 \longrightarrow \dots
$$

- Highly efficient: each step requires summing only $\mathcal{O}(n)$ terms.
- Analogous to cubic Berends-Giele recursion relations for tr ϕ^3 -theory amps. m_n ,

 \bullet General decomposition continues to hold for L -loop integrands,

$$
A_n^{(L)}(1 \dots n) = -X_{1,n-1} M_{n-1}^{(L)3\phi}(1 \dots n-2n-1) - X_{2,n} M_{n-1}^{(L)3\phi}(2 \dots n-1 n) + R_n^{(L)}.
$$

 \bullet General decomposition continues to hold for L -loop integrands,

$$
A_n^{(L)}(1 \dots n) = -X_{1,n-1} M_{n-1}^{(L)3\phi}(1 \dots n-2n-1) - X_{2,n} M_{n-1}^{(L)3\phi}(2 \dots n-1 n) + R_n^{(L)}.
$$

Soft Factor Expansion (SFE) for $R_n^{(L)}$ supplemented by new contributions,

 \bullet General decomposition continues to hold for L -loop integrands,

$$
A_n^{(L)}(1 \dots n) = -X_{1,n-1} M_{n-1}^{(L)3\phi}(1 \dots n-2n-1) - X_{2,n} M_{n-1}^{(L)3\phi}(2 \dots n-1 n) + R_n^{(L)}.
$$

Soft Factor Expansion (SFE) for $R_n^{(L)}$ supplemented by new contributions,

SFE manifests Adler Zero generalization to loop integrands. CB et.al. [2401.04731]

 \bullet General decomposition continues to hold for L -loop integrands,

$$
A_n^{(L)}(1 \dots n) = -X_{1,n-1} M_{n-1}^{(L)3\phi}(1 \dots n-2n-1) - X_{2,n} M_{n-1}^{(L)3\phi}(2 \dots n-1 n) + R_n^{(L)}.
$$

Soft Factor Expansion (SFE) for $R_n^{(L)}$ supplemented by new contributions,

- **SFE** manifests Adler Zero generalization to loop integrands. CB et.al. [2401.04731]
- SFE matches "perfect NLSM integrand" recently derived from δ -shift of tr ϕ^3 -theory. Arkani-Hamed et.al. [2403.04826]

 \bullet General decomposition continues to hold for L -loop integrands,

$$
A_n^{(L)}(1 \dots n) = -X_{1,n-1} M_{n-1}^{(L)3\phi}(1 \dots n-2n-1) - X_{2,n} M_{n-1}^{(L)3\phi}(2 \dots n-1 n) + R_n^{(L)}.
$$

Soft Factor Expansion (SFE) for $R_n^{(L)}$ supplemented by new contributions,

- **SFE** manifests Adler Zero generalization to loop integrands. CB et.al. [2401.04731]
- SFE matches "perfect NLSM integrand" recently derived from δ -shift of tr ϕ^3 -theory. Arkani-Hamed et.al. [2403.04826]

Thank you!