Analysis of local and non-local amplitudes

in the $B^0 \to K^{*0} \mu^+ \mu^-$ decay

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

ICHEP 2024, Prague

Universität Zürich^{UZH}

Martin Andersson On behalf of the LHCb Collaboration 19th July 2024

$B^0 \to K^+ \pi^- \mu^+ \mu^-$ has a clean signal

Efficient hadron and muon particle identification

Precise tracking

Largest collection of *bb*-pairs in the world

Int. J. Mod. Phys. A 30 (2015) 1530022

Rare decays

Rare decays provide a great environment to search for New Physics

Precision measurements allow for indirect searches for NP contributions of competitive order in e.g. $b \to s\ell^+\ell^-$

ICHEP 2024

$B^0 \rightarrow K^{*0} (\rightarrow K^+ \pi^-) \mu^+ \mu^-$

 $B^0 \to K^{*0} (\to K^+ \pi^-) \mu^+ \mu^-$ The phase space is fully described by θ_{ℓ} , θ_{K} , ϕ , $m_{K\pi}$ and $q^{2} \equiv m(\mu^{+}\mu^{-})^{2}$ Angular observables $\frac{d\Gamma[B^0 \to K^{*0}\mu^+\mu^-]}{dq^2 d\vec{\Omega} dm_{K\pi}^2} = \frac{9}{32\pi} \sum_i J_i(q^2) f_i(\cos\theta_{\ell'}, \cos\theta_K, \phi) g_i(m_{K\pi}^2)$ Angular distributions μ^+ θ_{ℓ} B^0_{\prime} K^+ $\mu^ \theta_K$ K^{*0} $\hat{n}_{K\pi}$ $\hat{n}_{\mu^+\mu^-}$ μ^{-} μ^{-} K^{*0} ϕ K^+ $\hat{p}_{K\pi}$ igodot μ \succ μ^+

ICHEP 2024

Martin Andersson

3

 $B^0 \rightarrow K^{*0} (\rightarrow K^+ \pi^-) \mu^+ \mu^-$ The phase space is fully described by θ_{ℓ} , θ_{K} , ϕ , $m_{K\pi}$ and $q^{2} \equiv m(\mu^{+}\mu^{-})^{2}$ Angular observables $\frac{d\Gamma[B^0 \to K^{*0}\mu^+\mu^-]}{dq^2 d\vec{\Omega} dm_{K\pi}^2} = \frac{9}{32\pi} \sum_i J_i(q^2) f_i(\cos\theta_\ell, \cos\theta_K, \phi) g_i(m_{K\pi}^2)$ Angular distributions μ^+ θ_ℓ B^0 μ^{-} $heta_K$ K^{*0} $\hat{n}_{K\pi}$ $\hat{n}_{\mu^+\mu^-}$ μ^{-} μ^{-} K^{*0} ϕ K^+ $\hat{p}_{K\pi}$ \odot μ^{-}

ICHEP 2024

Previous measurements of $B^0 \to K^{*0} \mu^+ \mu^-$

ICHEP 2024

Interpretation of the anomaly

Non-local contributions from the *cc* resonances impact the rare mode regions

NP or underestimated SM QCD?

ICHEP 2024

Martin Andersson

5

Previous measurement strategies

Measures observables in bins of q^2

Universität Zärich¹⁷¹

ICHEP 2024

Analysis strategy

Instead of the binned approach (similar to Run 1+2016 measurement PRD. 109 (2024) 052009)

$$\begin{aligned} C_{9}^{eff,\lambda}(q^{2}) &= C_{9}^{\mu} + Y_{c\overline{c}}^{(0)}(q_{0}^{2}) + Y_{c\overline{c}}^{1P,\lambda}(q) \\ C_{7}^{eff,\lambda} &= C_{7} + \zeta^{\lambda} e^{i\omega^{\lambda}} \end{aligned}$$

$(q^2) + Y_{c\overline{c}}^{2P,\lambda}(q^2) + Y_{\tau\overline{\tau}}(q^2)$

<u>Cornella et al. [EPJC 80 (2020) 12, 1095]</u>

$$\begin{aligned} C_9^{eff,\lambda}(q^2) &= C_9^{\mu} + Y_{c\overline{c}}^{(0)}(q_0^2) + Y_{c\overline{c}}^{1P,\lambda}(q^2) \\ C_7^{eff,\lambda} &= C_7 + \zeta^{\lambda} e^{i\omega^{\lambda}} \end{aligned}$$

ICHEP 2024

1-particle contributions

ho(770),	<i>ω</i> (782),
<i>φ</i> (1020),	J/ψ ,
$\psi(2S),$	ψ(3770),
ψ(4040),	$\psi(4160)$
$\psi(2S), \psi(4040),$	$\psi(3770)$ $\psi(4160)$

$Y^{2} + Y^{2P,\lambda}_{c\overline{c}}(q^{2}) + Y^{\tau\overline{\tau}}(q^{2})$

- 82),
- 70),

Martin Andersson

Cornella et al. [EPJC 80 (2020) 12, 1095]

$$\begin{aligned} C_9^{eff,\lambda}(q^2) &= C_9^{\mu} + Y_{c\overline{c}}^{(0)}(q_0^2) + Y_{c\overline{c}}^{1P,\lambda}(q^2) \\ C_7^{eff,\lambda} &= C_7 + \zeta^{\lambda} e^{i\omega^{\lambda}} \end{aligned}$$

ICHEP 2024

ho(770),	<i>ω</i> (782),
<i>φ</i> (1020),	J/ψ ,
$\psi(2S),$	ψ(3770),
$\psi(4040),$	$\psi(4160)$

Martin Andersson

 $D^*\overline{D}^*$

Cornella et al. [EPJC 80 (2020) 12, 1095]

$$\begin{aligned} C_9^{eff,\lambda}(q^2) &= C_9^{\mu} + Y_{c\overline{c}}^{(0)}(q_0^2) + Y_{c\overline{c}}^{1P,\lambda}(q^2) \\ C_7^{eff,\lambda} &= C_7 + \zeta^{\lambda} e^{i\omega^{\lambda}} \end{aligned}$$

ICHEP 2024

ho(770),	$\omega(78$
<i>φ</i> (1020),	J/ψ ,
$\psi(2S),$	$\psi(37)$
$y_{1}(4040)$	u(41)

$$C_{9}^{eff,\lambda}(q^{2}) = C_{9}^{\mu} + Y_{c\overline{c}}^{(0)}(q_{0}^{2}) + Y_{c\overline{c}}^{1P,\lambda}(q^{2})$$
$$C_{7}^{eff,\lambda} = C_{7} + \zeta^{\lambda} e^{i\omega^{\lambda}}$$

Determined theoretically at negative q^2

Constant term

Negligible impact from light quarks

Asatrian, Greub, Virto [JHEP 04 (2020) 012]

ho(770),	$\omega(78)$
<i>φ</i> (1020),	J/ψ ,
$\psi(2S),$	$\psi(37)$
$\psi(4040),$	$\psi(410)$

Universität Zürich

ICHEP 2024

$$C_{9}^{eff,\lambda}(q^{2}) = C_{9}^{\mu} + Y_{c\bar{c}}^{(0)}(q_{0}^{2}) + Y_{c\bar{c}}^{1P,\lambda}(q)$$

$$C_{7}^{eff,\lambda} = C_{7} + \zeta^{\lambda}e^{i\omega^{\lambda}}$$
Determined theoretically at negative q^{2}

$$C_{7}$$
 vertex correction Constant term Polarisation dependent shift to C_{7}
Negligible impact from light quarks Asatrian, Greub, Virto (JHEP 04 (2020) 012)
Universität ICHEP 2024
$$V_{c\bar{c}}^{(0)}(q_{0}^{2}) + Y_{c\bar{c}}^{(0)}(q_{0}^{2}) + Y_{c\bar{c}}^{(0)}(q_{0}^{2}) + Y_{c\bar{c}}^{(0)}(q_{0}^{2})$$

Analysis strategy

Differential decay rate

Signal fractions

Simulation

Acceptance

Data

- Resolution
- Background model

Theory

Local $B^0 \to K^{*0}$ form factors (Gaussian constrained)

ICHEP 2024

IC

Clear impact from non-local contributions on WCs (per helicity)

 $\Re(\varDelta C_{9,\parallel}^{\text{total}})$ LHCb 8.4fb⁻¹ 0 -4 -6

Good agreement with Run 1 + 2016 analysis, which models non-local contributions with polynomial expansion

PRD. 109 (2024) 052009

Results - Observables

ICHEP 2024

12

Tension in observables persist

Results - Wilson coefficients

$$C_9$$
 3.56 ± 0.28 ± 0.18

$$C_{10} -4.02 \pm 0.18 \pm 0.16$$

$$C_9' = 0.28 \pm 0.41 \pm 0.12$$

$$C'_{10} = -0.09 \pm 0.21 \pm 0.06$$

$$C_9^{\tau}$$
 (-1.0 ± 2.6 ± 1.0) × 10²

First direct measurement of C_9^{τ}

Global significance of 1.5σ

Largest local deviation is in C_9 at 2.1σ

Systematic uncertainty dominated by $\mathscr{B}(B^0 \to J/\psi K^{*0})$

<u>Phys. Rev. D 90 (2014), 112009</u>

ICHEP 2024

Non-local contributions are larger than what has been assumed so far Value of C_9 still shifted down from C_9^{SM} More data needed

 ${\cal C'}_9$

Results - Direct measurement of C_0^{τ}

Universität Zürich^{⊍z⊮}

ICHEP 2024

14

Many NP models expect large enhancements in the third generation

Best 90% limit from direct measurements $\mathscr{B}(B^0 \to K^{*0}\tau^+\tau^-) \sim 3.1 \times 10^{-3}$

Belle, Phys. Rev. D108 (2023) L011102

Summary

- Rare decays is a promising area to search for New Physics • $\sim 4\sigma$ tension in global fits to $b \rightarrow s\ell^+\ell^-$
- Binned (model independent) measurements of angular observables in $B^0 \to K^{*0} \mu^+ \mu^-$ are deviating from the SM - most clearly visible in P'_5 by CMS and LHCb
- Non-local contributions are larger than what has been assumed so far Value of C_9 still shifted down from C_9^{SM} - more data needed
- First direct determination of C_0^{τ}
 - Competitive sensitivity to $\mathscr{B}(B^0 \to K^{*0}\tau^+\tau^-)$ with direct measurements!

15

Thank you for listening!

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Universität Zürich^{UZH}