

Up and Down Quark Structure of the Proton

Mingzhe Xie University of Science and Technology of China On behalf of the D0 Collaboration

ICHEP 2024 July 18th

arXiv:2403.09331

Review of the motivation

• Proton structure is determined by global analysis of all experimental observables due to mixed quark information

few observables vs mixture of various parton information

parton density strong depends on non-perturbative parameterization form, pQCD calculation and sum rules.

• Find new experimental observable to constraint proton structure information

Up and down quark structure

- More specifically, the experimental constraints for u and d quarks are limited despite all observables are relative to them.
- Few observables dominated by single quark
 - γ -exchange DIS, dominated by u, **mainly at large x**
 - W-exchange at HERA, separate u and d by W boson charge, **but statistics very limited!**
- Most observables are a mixture of u and d
 - $F_2^Z, F_3^Z, F_3^{W^+}(N), F_3^{W^-}(N), \sigma(W^+), \sigma(W^-), \sigma(Z)$
 - Also involve sea quark, heavy quark
 - Unable to give strong constraints

 $F_3^W(N)$ from $l(\nu) - N$ scattering is indistinguishable for u and d because N is a combination of proton and neutron.

• It's important to have more direct measurement of u and d.

A new measurement of up and down quark structure of proton

- arXiv:2403.09331
- $A_{FB}^{u}(u\bar{u}, c\bar{c} \text{ initial states})$ differs from $A_{FB}^{d}(d\bar{d}, s\bar{s}, b\bar{b} \text{ initial states})$
- The observed $A_{FB}^{p\bar{p}}$ is a combination of A_{FB}^{u} and A_{FB}^{d} , where their weights reflect the up and down quark information separately

For the Tevatron, the $p\overline{p}$ initial state allows the Drell-Yan process to occur from mainly valence quarks.

Factorization of A_{FB}

• Up and down quark information can be factorized into proton structure parameters in A_{FB} , up to all orders.

Details in Phys.Rev.D 106,033001 (2022)

$$A_{FB}(M,Y,Q_T) = \begin{bmatrix} \Delta_u(M,Y,Q_T) + P_u(Y,Q_T) \end{bmatrix} \cdot \begin{bmatrix} A_{FB}^u(M,Y,Q_T;\sin^2\theta_{eff}^l) \\ + \begin{bmatrix} \Delta_d(M,Y,Q_T) + P_d(Y,Q_T) \end{bmatrix} \cdot \begin{bmatrix} A_{FB}^u(M,Y,Q_T;\sin^2\theta_{eff}^l) \\ \cdot \begin{bmatrix} \Delta_d(M,Y,Q_T) + P_d(Y,Q_T) \end{bmatrix} \end{bmatrix}$$

Proton structure parameters $\Delta_u, \Delta_d, P_u, P_d$: Separately represent the u and d quark information.

Electroweak asymmetry of the hard process $u\overline{u} \rightarrow Z/\gamma^* \rightarrow l^+l^-$ and $d\overline{d} \rightarrow Z/\gamma^* \rightarrow l^+l^-$, can be precisely predicted. **PDF-independent.**

 P_u and P_d can be individually determined from the observed A_{FB}^{pp} .

Proton structure parameters

$$P_{u}(x_{1}, x_{2}) \approx \frac{\sum_{q=u,c} [q(x_{1})q(x_{2}) - \bar{q}(x_{1})\bar{q}(x_{2})]\mathbb{N}_{q}}{\sum_{q=u,d,s,c,b} [q(x_{1})q(x_{2}) + \bar{q}(x_{1})\bar{q}(x_{2})]\mathbb{N}_{q}} \qquad x_{1,2} = \frac{\sqrt{M^{2} + Q_{T}^{2}}}{\sqrt{s}} e^{\pm Y}$$

$$P_{d}(x_{1}, x_{2}) \approx \frac{\sum_{q=d,s,b} [q(x_{1})q(x_{2}) - \bar{q}(x_{1})\bar{q}(x_{2})]\mathbb{N}_{q}}{\sum_{q=u,d,s,c,b} [q(x_{1})q(x_{2}) + \bar{q}(x_{1})\bar{q}(x_{2})]\mathbb{N}_{q}}$$

- $P_u(P_d)$ has no down (up) quark densities (except for a normalized total cross section)
- The numerators vanished for s, c and b, since there is no difference from their antiquarks. $\begin{bmatrix} u_{v}^{2} & d_{v}^{2} \end{bmatrix}$
- Predominant by u_v and d_v .
- Denominator cancelled in the ratio.

$$P_{u} \approx \frac{u_{v}^{2}}{\sigma_{total}} \qquad P_{d} \approx \frac{d_{v}^{2}}{\sigma_{total}}$$
$$R \equiv \frac{P_{u}}{P_{d}} \approx \frac{u_{v}^{2}}{d_{v}^{2}}$$

(Just an approximation to show the predominant information. Not used in real calculation)

Previous measurements

• Extracted from the unfolded $A_{FB}(M)$ spectrum

A tendency for P_u to be lower and P_d to be higher than prediction

LHC pp data is a mixture of valence and sea quarks, different from the Tevatron $p\overline{p}$ data

Details of this work

- D0 8.6 fb^{-1} , both dielectron and dimuon final states
- Electron $|\eta| < 1.1$ (central), $1.5 < |\eta| < 3.5$ (endcap), $p_T > 25$ GeV
- Muon $|\eta| < 1.8, \ p_T > 15 \ {
 m GeV}$
- Mass window 70 < *M* < 116 GeV

Simultaneous fit of P_u and P_d

Varying P_u and P_d : A_{FB} templates of simulated MC samples

 P_u and P_d are determined by requiring the best agreement between data and MC.

$$\chi^2 = \sum_{i} \frac{\left[A_{FB}^{data}(i) - A_{FB}^{MC}(i)\right]^2}{\sigma_i^2}$$

9

Uncertainties

- Experimental systematics
 - Calibration of electron energy and muon momentum
 - Efficiency determination
 - Estimation of $Z/\gamma^* \rightarrow \tau \tau$, W+jets, diboson (WW, WZ), $\gamma \gamma$, top quarks, multijets backgrounds. Total backgrounds less than 1%.
- Theoretical uncertainties
 - $\sin^2 \theta_{eff}^l$: fixed at 0.23153 \pm 0.00016 (LEP/SLC combination)
 - Δ-induced uncertainty: fix the mass shape of structure parameters at CT18NNLO prediction, uncertainty estimated using the PDF error sets.
 - QCD: The observed A_{FB} is an average over Y and Q_T . The difference between Pythia (LO) and Resbos (NLO) is taken as unc.

Measurement in |Y|=[0,2.3]

$$P_u = 0.602 \pm 0.019(stat.) \pm 0.010(theory) \pm 0.006(syst.)$$

$$P_d = 0.258 \pm 0.023(stat.) \pm 0.012(theory) \pm 0.005(syst.)$$

$$R = 2.34 \pm 0.32$$

Higher d quark contribution and lower u quark contribution

Measurement as a function of |Y|

12

g/10

 u_{v}

 a_v

0.1

Х

Summary and Outlook

• This measurement provide a new proton structure information

$$\boldsymbol{P}_{\boldsymbol{u}} \approx \frac{u_{\boldsymbol{v}}^2}{\sum_{q=u,d,s,c,b} \sigma_q} \qquad \boldsymbol{P}_{\boldsymbol{d}} \approx \frac{d_{\boldsymbol{v}}^2}{\sum_{q=u,d,s,c,b} \sigma_q} \qquad \boldsymbol{R} \approx \frac{u_{\boldsymbol{v}}^2}{d_{\boldsymbol{v}}^2}$$

 P_u and P_d separately represent the valence u and d quark contribution, which are indistinguishable for other experimental observables, e.g. structure function, inclusive cross section of W,Z.

• We can also measure P_u and P_d at LHC pp collision

$$P_u \propto u(x_1)\overline{u}(x_2) - \overline{u}(x_1)u(x_2)$$

$$P_d \propto d(x_1)\overline{d}(x_2) - \overline{d}(x_1)d(x_2)$$

$$x_1 > x_2$$

LHC measurements mix sea quark contributions comparable to the valence quarks, as well as larger range of x value

So measurement at Tevatron provide unique and novel information on the u and d valence quark distributions

Summary and Outlook

- d valence contribution is higher than PDF prediction while u valence contribution is lower, their ratio differ from PDF prediction by 3.5 σ
- Impact not only on valence PDFs, but also constraining sea quarks through sum rules in the global analysis $P_u = \frac{1}{2} \frac$

Back up

A_{FB} for different quark flavor initial states

Average on M dependence

• We only measure an average information (P_u, P_d) in a specific mass region.

$$C_u(M, Y, Q_T) \equiv [\Delta_u(M, Y, Q_T) + P_u(Y, Q_T)]$$
$$C_d(M, Y, Q_T) \equiv [\Delta_d(M, Y, Q_T) + P_d(Y, Q_T)]$$

Average over mass $P_u(Y,Q_T) \equiv \int C_u(M,Y,Q_T) dM / \int dM$ measured in this work $P_d(Y,Q_T) \equiv \int C_d(M,Y,Q_T) dM / \int dM$

Shape of mass fixed in this work

 $\Delta_u(M, Y, Q_T) = C_u(M, Y, Q_T) - P_u(Y, Q_T)$ $\Delta_d(M, Y, Q_T) = C_d(M, Y, Q_T) - P_d(Y, Q_T)$

Measurement in the full |Y| range

Correlation between P_u and P_d is -0.859

	P_u	P_d	R
Measured	0.602 ± 0.022	$0.258 {\pm} 0.026$	$2.34{\pm}0.32$
CT18NNLO	$0.636 {\pm} 0.011$	0.213 ± 0.009	$2.99 {\pm} 0.16$
MSHT20	$0.633 {\pm} 0.009$	$0.204{\pm}0.008$	$3.10{\pm}0.14$
NNPDF4.0	$0.624 {\pm} 0.008$	$0.190 {\pm} 0.007$	$3.29 {\pm} 0.13$

Uncertainty breakdown

Uncertainties	P _u	P_d	
Statistics	0.019	0.023	
Experimental	0.006	0.005	
$\sin^2 heta^l_{eff}$	0.004	0.009	
Δ-induced	0.009	0.009	
QCD	0.002	<0.001	

Measurement in Y-dependence

Y range	P_u	δP_u
[0, 0.5]	$0.515 \pm 0.031 \pm 0.011 \pm 0.009 \pm 0.004 \pm 0.005$	0.034
[0.5, 1.0]	$0.589 \pm 0.035 \pm 0.010 \pm 0.008 \pm 0.004 \pm 0.005$	0.038
[1.0, 1.5]	$0.568 \pm 0.036 \pm 0.007 \pm 0.010 \pm 0.005 \pm 0.003$	0.038
[1.5, 2.3]	$0.680 \pm 0.060 \pm 0.009 \pm 0.020 \pm 0.005 \pm 0.003$	0.064
Y range	P_d	δP_d
[0, 0.5]	$0.232 \pm 0.036 \pm 0.007 \pm 0.007 \pm 0.008 \pm 0.001$	0.038
[0.5, 1.0]	$0.189 \pm 0.042 \pm 0.008 \pm 0.007 \pm 0.008 \pm 0.004$	0.044
[1.0, 1.5]	$0.348 \pm 0.046 \pm 0.005 \pm 0.008 \pm 0.010 \pm 0.002$	0.048
[1.5, 2.3]	$0.252 \pm 0.076 \pm 0.014 \pm 0.020 \pm 0.009 \pm 0.002$	0.081
Y range	R	δR
[0, 0.5]	2.22	
[0.5, 1.0]	3.11	
[1.0, 1.5]	1.63	
[1.5, 2.3]	2.70	

Correlation between P_u and P_d is -0.855, -0.862, -0.866 and -0.871 in 4 |Y| bins

Extraction of structure parameters P_u and P_d

Differential cross section of Drell-Yan process can be factorized as a function of P_u and P_d

$$\begin{aligned} \frac{d\sigma}{d\cos\theta_h dY dM dQ_T} &= \frac{3}{8} \sum_{f=u,d,s,c,b} \alpha_f(Y,M,Q_T) \times \\ &\left\{ (1+\cos^2\theta_h) + \frac{1}{2} A_0^f(Y,M,Q_T)(1-3\cos^2\theta_h) + [1-2D_f(Y,M,Q_T)] A_4^f(Y,M,Q_T)\cos\theta_h \right\} \\ &= \frac{3}{8} \sum_{f=u,d,s,c,b} \alpha_f(Y,M,Q_T) \times \left\{ (1+\cos^2\theta_h) + \frac{1}{2} A_0^f(Y,M,Q_T)(1-3\cos^2\theta_h) \right\} \\ &+ \frac{3}{8} \sum_{f=u,d,s,c,b} \alpha_f(Y,M,Q_T) [1-2D_f(Y,M,Q_T)] A_4^f(Y,M,Q_T)\cos\theta_h \\ &= \frac{3}{8} \sum_{f=u,d,s,c,b} \alpha_f(Y,M,Q_T) \times \left\{ (1+\cos^2\theta_h) + \frac{1}{2} A_0^f(Y,M,Q_T)(1-3\cos^2\theta_h) \right\} \\ &+ \frac{3}{8} \sum_{f=u,d,s,c,b} \alpha_f(Y,M,Q_T) \left\{ \frac{\sum_{f=u,c} [1-2D_f(Y,M,Q_T)] \alpha_f(Y,M,Q_T) A_4^f(Y,M,Q_T)}{\sum_{f=u,d,s,c,b} \alpha_f(Y,M,Q_T)} \cos\theta_h \\ &+ \frac{\sum_{f=d,s,b} [1-2D_f(Y,M,Q_T)] \alpha_f(Y,M,Q_T) A_4^f(Y,M,Q_T)}{\sum_{f=u,d,s,c,b} \alpha_f(Y,M,Q_T)} \cos\theta_h \\ &= \frac{3}{8} \sum_{f=u,d,s,c,b} \alpha_f(Y,M,Q_T) \times \left\{ (1+\cos^2\theta_h) \\ &+ \frac{1}{2} A_0^f(Y,M,Q_T)(1-3\cos^2\theta_h) + [\Delta_u(Y,M,Q_T) + P^u(Y,Q_T)] A_4^u(Y,M,Q_T)\cos\theta_h \\ &+ [\Delta_d(Y,M,Q_T) + P^d(Y,Q_T)] A_4^d(Y,M,Q_T)\cos\theta_h \right\} \end{aligned}$$

By changing the input value of P_u and P_d , we can get a different cross section and A_{FB} .

Extraction of structure parameters P_u and P_d

• Event-by-event reweighting

$$\frac{d\sigma}{d\cos\theta_h dY dM dQ_T} \Big|_{|Y|<2.3,Q_T>0} = \frac{3}{8} \sum_{f=u,d,s,c,b} \alpha_f(Y,M,Q_T) \\ \times \Big\{ (1+\cos^2\theta_h) + \frac{1}{2} A_0^f(Y,M,Q_T)(1-3\cos^2\theta_h) \\ + [\Delta_u(Y,M,Q_T) + P^u] A_4^u(Y,M,Q_T)\cos\theta_h \\ + [\Delta_d(Y,M,Q_T) + P^d] A_4^d(Y,M,Q_T)\cos\theta_h \Big\}$$
Reweighting factor defined as:

$$R(Y,M,Q_T,\cos\theta_h) = \frac{d\sigma(P^u,P^d)}{dY dM dQ_T d\cos\theta_h} \Big/ \frac{d\sigma(P^u = \text{default},P^d = \text{default})}{dY dM dQ_T d\cos\theta_h}$$

Closure-test

	P^u	P^d
Predictions in pseudo-data sample	0.5844	0.2256
Measured values using CC-CC events $(p_T > 25 \text{ GeV})$	$0.5831 {\pm} 0.0039$	0.2255 ± 0.0058
Measured values using CC-EC events $(p_T > 25 \text{ GeV})$	$0.5843 {\pm} 0.0019$	0.2260 ± 0.0029
Measured values using di-muon events $(p_T > 15 \text{ GeV})$	$0.5849 {\pm} 0.0020$	0.2270 ± 0.0030
Measured values using CC-CC events $(p_T > 15 \text{ GeV})$	$0.5844 {\pm} 0.0038$	0.2273 ± 0.0057
Measured values using CC-EC events $(p_T > 15 \text{ GeV})$	$0.5843 {\pm} 0.0018$	0.2270 ± 0.0028
Measured values using di-muon events $(p_T > 25 \text{ GeV})$	0.5847 ± 0.0021	0.2263 ± 0.0031
Measured values using $CC-CC + CC-EC + di$ -muon events		<u> </u>
$(p_T > 25 \text{GeV for CC-CC and CC-EC}, p_T > 15 \text{GeV for di-muon})$	$0.5847 {\pm} 0.0013$	$0.2266 {\pm} 0.0019$

Method is closure regardless of the kinematic cut

D0 detector

- Central tracking system
- Silicon Microstrip Tracker (SMT)
- Scintillating Central Fiber Tracker (CFT)
- 1.9T Solenoid
- Calorimeter
- Liquid argon and uranium $|\eta| < 4.2$
- Electron energy measurement
- Muon system
- Scintillator
- Drift Tubes
- 1.8T iron toroids

