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We present an interpretable implementation of the autoencoding algorithm,
used as an anomaly detector, built with a forest of deep decision trees on
FPGA, field programmable gate arrays. Scenarios at the Large Hadron Collider
at CERN are considered, for which the autoencoder is trained using known
physical processes of the Standard Model. The design is then deployed in real-
time trigger systems for anomaly detection of unknown physical processes,
such as the detection of rare exotic decays of the Higgs boson. The inference is
made with a latency value of 30 ns at percent-level resource usage using the
Xilinx Virtex UltraScale+ VU9P FPGA. Our method offers anomaly detection at
low latency values for edge Al users with resource constraints.
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Tree training by sampling 1d PDFs
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30-trees, 6-deep, 8-bit Resource: O(1)% on Xilinx Virtex UltraScale+ VU9P

Dataset: Roche et al., doi:10.17632/44t976dyrj.1 Method: fwX 8-bit 8-var 30-tree 6-depth
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LHC anomaly dataset [Sci. Data 9, 118 (2022)] -atency S0Ins 80 ns

54 input variables, 30-trees 4-deep 8-bits -F 0.6% 0.5%
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