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ns AI for anomaly detection with decision trees on FPGA
Efficient real-time trigger design to save new phenomena without knowing it a priori

 Tae Min Hong on behalf of co-authors

Tree autoencoder on MNIST images

• Use handwritten 28×28 pixels of 8-bit greyscale, teach it 0–4
• Compress by 300x then decompress two images: “4” and “9”
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Nanosecond anomaly detection with
decision trees and real-time application to
exotic Higgs decays

S. T. Roche 1,2, Q. Bayer 2, B. T. Carlson 2,3, W. C. Ouligian2, P. Serhiayenka2,
J. Stelzer 2 & T. M. Hong 2

We present an interpretable implementation of the autoencoding algorithm,
used as an anomaly detector, built with a forest of deep decision trees on
FPGA, field programmable gate arrays. Scenarios at the Large Hadron Collider
at CERN are considered, for which the autoencoder is trained using known
physical processes of the StandardModel. The design is then deployed in real-
time trigger systems for anomaly detection of unknown physical processes,
such as the detection of rare exotic decays of theHiggs boson. The inference is
made with a latency value of 30 ns at percent-level resource usage using the
Xilinx Virtex UltraScale+ VU9P FPGA. Our method offers anomaly detection at
low latency values for edge AI users with resource constraints.

Unsupervised artificial intelligence (AI) algorithms enable signal-
agnostic searches beyond the Standard Model (BSM) physics at the
Large Hadron Collider (LHC) at CERN1. The LHC is the highest energy
proton and heavy ion collider that is designed to discover the Higgs
boson2,3 and study its properties4,5 aswell as to probe the unknown and
undiscovered BSM physics (see, e.g.,6–8). Due to the lack of signs of
BSM in the collected data despite the plethora of searches conducted
at the LHC, dedicated studies look for rare BSM events that are even
more difficult to parse among the mountain of ordinary Standard
Model processes9–13. An active area of AI research in high energy phy-
sics is in using autoencoders for anomaly detection, much of which
providesmethods to find rare andunanticipatedBSMphysics.Muchof
the existing literature, mostly using neural network-based approaches,
focuses on identifying BSM physics in already collected data14–70. Such
ideas have started to produce experimental results on the analysis of
data collected at the LHC71–74. A related but separate endeavor,which is
the subject of this paper, is enabling the identification of rare and
anomalous data on the real-time trigger path for more detailed
investigation offline.

The LHC offers an environment with an abundance of data at a 40
MHz collision rate, corresponding to the 25 ns time period between
successive collisions. The real-time trigger path of the ATLAS and CMS
experiments75,76, e.g., processes data using custom electronics using
field programmable gate arrays (FPGA) followed by software trigger

algorithms executedona computing farm.Thefirst-level FPGAportion
of the trigger system accepts between 100 kHz to 1 MHz of collisions,
discarding the remaining ≈ 99% of the collisions. Therefore, it is
essential to discovery that the FPGA-based trigger system is capable of
triggering potential BSM events. A previous study aimed at LHC data
has shown that an anomaly detector based on neural networks can be
implemented on FPGA with latency values between 80 to 1480 ns,
depending on the design77.

In this paper, we present an interpretable implementation of an
autoencoder using deep decision trees that make inferences in 30 ns.
As discussed previously78,79, decision tree designs depend only on
threshold comparisons resulting in fast and efficient FPGA imple-
mentation with minimal reliance on digital signal processors. We train
the autoencoder on known Standard Model (SM) processes to help
trigger the rare events that may include BSM.

In scenarios for which a specific BSM model is targeted and its
dynamics are known, dedicated supervised training against the SM
sample, i.e., BSM-vs-SM classification, would likely outperform an
unsupervised approach of SM-only training. The physics scenarios
considered in this paper are examples to demonstrate that our auto-
encoder is able to trigger on BSM scenarios as anomalies without this
prior knowledge of the BSM specifics. Nevertheless, we consider a
benchmark where our autoencoder outperforms the existing con-
ventional cut-based algorithms.
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Context for low-latency real-time 40 MHz trigger

Put AI 
on FPGA

Design
• Parallel decision path (PDP) [ J. Instrum. 17, P09039 (2022)]

 Composed to combinatoric logic (mostly threshold comparisons)

• Encoding is decoding with ★-coder technology
 Put the estimate of x inside the terminal bin → No need for a latent space! 
 But the latent data (it’s the bin #) is retrievable if desired

Performance
• Featured physics
 H125 → a70 a10 → bb γγ (also for H70)
 8 input variables
 30-trees, 6-deep, 8-bit
 

• Comparison
 LHC anomaly dataset [Sci. Data 9, 118 (2022)]
 54 input variables, 30-trees 4-deep 8-bits
 hls4ml-based [Nat. Mach. Intell. 4, 154 (2022)]
 Physics perf.  : Comparable AUC to ours
 Firmware perf. : See table on right for hls4ml DNN VAE

Tree training by sampling 1d PDFs

• Unsupervised training using one sample, e.g., using known physics
• Iteratively split the training data by sampling its 1d projections

ML training of deep decision tree (DDT) to create the decision tree grid (DTG)

first
split

Threshold is generated by sampling the
projection selected from sampling the
distribution of the highest frequency
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1d projections Decision tree grid
(DTG) with 7 bins
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| Known orig. – Est. | 
= small distance

Model knows “4”
Identifies known physics

| Unknown orig. – Est. | 
= large distance

Model doesn’t know “9”
Identifies new phenomena

• For each bin, median value of the training data is the estimate
• Anomaly score = ∑ |xoriginal – xestimate|, x is the set of input variables

New AI
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70 fwX AE on H

125
 cuts on Hγ 2

70
 cuts on Hγ 2

fwX 8-bit 8-var 30-tree 6-depth Method: Roche et al., doi:10.17632/44t976dyrj.1 Dataset:

fwX 8-bit 56-var 30-tree 4-depth Method: Govorkova et al., doi:10.1038/s41597-022-01187-8 Dataset:

Physics : eff. 3x higher vs. ATLAS-inspired 3kHz
Timing : 30 ns latency, 5 ns interval
Resource : O(1)% on Xilinx Virtex UltraScale+ VU9P

our work hls4ml
Latency 30 ns 80 ns
FF 0.6% 0.5%
LUT 9% 3%
DSP 0.8% 1%
BRAM 0 0.3%

Example: 
ATLAS at LHC
cern.ch/twiki/pub/AtlasPublic/ApprovedPlots
DAQ/tdaq-run3-schematic-withoutFTK.pdf

IP & testbench available 
online at fwx.pitt.edu

NB. Our work is for wider 
audiences, not just at LHC

yann.lecun.com/exdb/mnist

cern.ch/twiki/pub/AtlasPublic/ApprovedPlots
DAQ/tdaq-run3-schematic-withoutFTK.pdf
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