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Dark Matter Requires Physics Beyond the Standard Model

The Range of Possibilities is Stunning.

1072 eV 1 keV 100 GeV 1000 M
de Broglie wavoelength Warm DM WIMP paradigm Shot-noise fluctuations in
= galaxy size Lyman-alpha forest

1 Mg ~ 10°7 GeV
® In this talk, we will parse probing this entire mass range as a series of theoretically-well-
motivated experimental challenges

® The question for the progress of the field is: how many of these challenges can we meet in
the next 10-20 years?



The Challenge.

All known properties of dark matter are via the gravitational interaction.

® Gravity is weak. Standard Model Connector Dark matter

® Gravity gives the gross
properties of dark matter —
density and large-scale
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® | earning about particle c
properties will require stronger-
than-gravitational interactions. S
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Weakly Interacting Massive Particles

Theoretically Well-Motivated and Experimentally Still Viable

® WIMPs have not been found but are not theoretically eliminated.

® They remain well-motivated by their observed abundance.

Relic abundance, indirect detection

’I’LDM<O'”U> ~ H(Tfo)

DM SM
PDM = Pobs

DM oy (ov) ~ 3 x 107%° cm? /s

Production at colliders

® The relic abundance estimate for WIMPs gives:

2 2 3 4 2 T 2
(ov) n’o;x \/1 — (m—M) ~ 3 x 10726 (g—x) ( eV)
m 7, S 0.4 7,




® WIMPs have not been found but are not theoretically eliminated.

Weakly Interacting Massive Particles

Theoretically Well-Motivated and Experimentally Still Viable

® Cosmologically-favored pure electroweakino masses have not been eliminated by LHC, which
more strongly constrains colored particles.
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Weakly Interacting Massive Particles

Theoretically Well-Motivated and Experimentally Still Viable

® WIMPs have not been found but are not theoretically eliminated.

® Pure electroweakinos produce detectable annihilation by-products in Cherenkov Telescopes
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Challenge #1: Fully Cover Electroweakino DM, e.g. with Cherenkov Telescopes




Weakly Interacting Massive Particles

Theoretically Well-Motivated and Experimentally Still Viable

® WIMPs have not been found but are not theoretically eliminated.

® Pure electroweakinos have small scattering cross-sections in Direct Detection, because the
tree-level Higgs-mediated process vanishes.
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Dark Matter of a Very Low Mass

Dark Matter with Mass Below the Weak Scale

—
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de Broglie WaV.elength Warm DM WIMP paradigm Shot-noise fluctuations in
= galaxy size Lyman-alpha forest
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® Such low-mass states have evaded detection by
having small couplings to the SM.
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Dark Matter of a Very Low Mass

Dark Matter with Mass Below the Weak Scale

_
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Challenge #3: Build out the suite of axion searches



Dark Matter of a Very Low Mass

Dark Matter with Mass Below the Weak Scale

_

1072 eV leV  1keV 100 GeV 1000 Mg
de Broglie Wavoelength Wavelike Warm DM WIMP paradigm Shot-noise fluctuations in
= galaxy size Lyman-alpha forest

® Next, we discuss an intermediate range where observation via particle interactions with SM is
still highly motivated though not detectable with traditional experiments

® These are hidden sector/valley DM models, which arise generically in top-down
constructions, and give rise to qualitatively different observational sighatures

Review KZ 2401.03025



27 \What's in the hidden

valley?
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The visible \ ‘ Mass gap
Universe

Many theories with
this structure:

QCD-like theory with F flavors and N colors
QCD-like theory with only heavy quarks
QCD-like theory with adjoint quarks

Pure glue theory

UV-fixed point = confining

N=4 SUSY Conformal

RS throat

Seiberg duality cascade

KS throat

Remnant from SUSY breaking
Partially higgsed SU(N) theory
Banks-Zaks sector

Unparticles
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A concrete example

x Z mediator

x+ SU(N) gauge theory with 1 light quark
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Hidden Sector Dark Matter

Theories have broadened the scope of experimental searches.

® Hidden sectors have their own
forces and dynamics that are not ctandard Model
parasitic on the SM forces.

Connector Dark matter

pure glue, light flavors, heavy flavors, quirky

. N eW eX pe ri m e ntS I OO k at n eW asymmetric dark matter, Strongly Interacting

Massive Particle (SIMP), Wess-Zumino-Witten

mass scales with new forces at e
. Darkogenesis, Xogenesis, Hylogenesis,
Wea ke r CO u pl I ngS Wi, Z, H, t Cladogenesis, Ail;]/clllcl)(giLneeptogenesis, Dark

Energy

Dark photons, Freeze-in, WIMPless miracle

Mirror Matter, Atomic Matter, Self-Interacting
Dark Matter, Magentic, Dark Anapole and
EDMs

Aqcp Hidden sector

Visible sector

Interaction

Challenge #4: Build out the suite of accelerator searches—high energy
and intensity—for hidden sectors




Hidden Sector Dark Matter

Theories have broadened the scope of experimental searches.
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Hidden Sector DM in Experiments

Focusing the Lamplight

® HSDM has dramatically broadened the scope of DM theory.

® In 2008, they said the direct detection of light DM was not possible. We have come a long
way.

® Since HSDM does not solve a SM problem, unlike WIMP and axion, its couplings to SM are
less determined. Can we hope to have an experimentally predictive theory?



Hidden Sector DM in Experiments

Models Best-Motivated by Relic Abundance Can be Reach with 1 kg-yr exposure

® Yes, if we utilize DM abundance as a guide.
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Challenge #5: Cover the abundance-driven light DM models in direct detection



The Landscape of sub-GeV Dark Matter Direct Detection

Beyond Nuclear Recoil in Direct Detection

® Nuclear Recoil utilized in WIMP
searches is poorly matched to -
light DM detection.
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The Landscape of sub-GeV Dark Matter Direct Detection

An understanding of condensed matter systems, and its collective behavior, is crucial

1 meV 1eV 1 keV 1 MeV 1 GeV 100 GeV
| | | | | | -
Absorption Nuclear recoil
XENONIT
LZ
Superfluid helium Polar Crystals
QCD axion, “ultralight frontier” Collective Excitations — Phonons/ Magnons
~“meV energy resolution ~eV energy resolution ~keV energy resolution

Models Best-Motivated by Relic Abundance Can be Reached with 1 kg-yr exposure



Dark Matter of a Very High Mass

Learning about Microscopic Properties of DM Through Gravitational Force

—

1072 eV 1 keV 100 GeV 1000 M
de Broglie WaV.elength Warm DM WIMP paradigm Shot-noise fluctuations in
= galaxy size Lyman-alpha forest

® |t is challenging to set the relic abundance of DM through SM interactions when it is heavier
than ~10 TeV, because cross-sections are not sufficiently large.

2 2 3 4 2
(ov) n'oix \/1 — (m—M) ~ 3 x 10726 (g—x) (2 TeV)
m 7, s \0.4 7,



Gravitational Detection of DM

Microscopic Nature of DM Can Leave Imprints on Sub-Halos

® |t might be possible to detect sub halos as light as M ~1075 Mg ~ 10 GeV

® Many theories (e.g. PBH, axions, WDM, SIDM, early MD) predict different behavior than

LambdaCDM at different sub-halo mass scales, requiring a wide range of new measurements
of small scale power.
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Challenge #6: Observe the Dark Matter Power on Small Scales




Observing DM substructure is a long-term, challenging but extremely important problem.

Dark Matter Substructure

® All involve utilizing changes in the metric due to transiting DM substructure.

® c.g. Changes in pulse time-of-arrival due to metric fluctuations.
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log 0P (k)

Dark Matter Substructure

Observing DM substructure is a long-term, challenging but extremely important problem.

® All involve utilizing changes in the metric due to transiting DM substructure.

® Existing ideas involve astrometric lensing, PTAs, FRBs and make optimistic assumptions. How
can we bring this closer to an achievable goal?
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Dark Matter Substructure

Tests Microscopic Nature of Dark Matter

® LambdaCDM model predicts scale invariant power spectrum, and only gravitational dynamics
in dark matter sub-halos.

® A measurement of the power spectrum on small scales is a gravitational imprint of the
microphysical nature of dark matter

Axion MC mis.
Axion MC str.

1 102 10* 105 108 10° 10'2 104
k [Mpc™']

Lee, Mitridate, Trickle, KZ 2012.09857 Boehm et al 1404.7012

Challenge #7: Robustly Constrain Non-gravitational DM Self-interactions



Discussion

The Dark Matter Road Ahead

® A broad theoretical net has been cast.

® Many theory frameworks and ideas have been proposed to tile the astrophysically and cosmologically
viable model space.

® The theoretical ideas for experiments to search for these theories are available, such as collective
excitations.

® There is a well-defined and exciting experimental search program underway.

® This will remain an experimentally-driven field, with crucial theoretical support.
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