

PARTICLE PHYSICS + MACHINE LEARNING

- Particle physics has a long history of applying machine learning
 - From the early days in the 1980s applying neural networks to tracking
 - To the Higgs boson discovery in 2012 applying boosted decision trees to identify $H \rightarrow \tau \tau$

Comp. Phys. Comm. 49, 429 (1988) Nature 560, 41 (2018)

INTRODUCTION & OUTLINE

- ML has changed the way we do physics searches and measurements
 - It is an essential and versatile tool that we use to improve existing approaches
 - It enables fundamentally new approaches
- How are LHC experiments applying novel ML techniques?
 - Improved classification, calibration, & uncertainties
 - Faster simulation
 - Unfolding
 - Anomaly detection
 - Summary and outlook

FASTER SIMULATION ECOLOGICAL Description of the second Architectures Architectures Graphs ets (point clouds) SUBMINAR REAL STATES OF THE SUBMINAR OF THE SU

IMPACT OF GNN TAGGING

- Previously search for boosted $Z' \rightarrow qq$ resonances reconstructed as large-radius jets with substructure
- Now signal distinguished from the backgrounds using **ParticleNet GNN** discriminants

Stringent limits on universal g_q coupling

LANDSCAPE OF BOOSTED HIGGS BOSON FINAL STATES

- CMS ParticleNet has been successfully deployed to identify H→qq vs. QCD large-radius jets in massagnostic way using a highly granular multiclassifier
- Extend this same approach to a large array of final states, including $H \rightarrow VV$, all-hadronic (3- or 4-prong), and semileptonic modes

Process	Final state/ prongness	heavy flavour	# of classes
H→VV	qqqq	00/10/00	3
(full-hadronic)	qqq	00/10/20	3
H→WW (semi-leptonic)	evqq		2
	μνqq		2
	τ _e vqq	0c/1c	2
	τ _μ νqq		2
	τ _h vqq		2
H→qq		bb	1
		СС	1
		SS	1
		qq (q=u/d)	1
Η→ττ	TeTh		1
	$τ_μ τ_h$		1
	τ _h τ _h		1
t→bW	bqq	1b + 0o/1o	2
(hadronic)	bq	10 + 00/10	2
t→bW (leptonic)	bev		1
	bμv		1
	bτ _e v	1b	1
	bτ _μ v		1
	bτ _h v		1 q
QCD		b	1
		bb	1
		С	1 _a
		СС	1
		others (light)	1

CMS-PAS-HIG-23-012

GLOBAL PARTICLE TRANSFORMER

- in order to infer the origin of jets
- Challenge to calibrate these taggers when there is no SM analogue for the signal we can isolate
 - New technique uses Lund jet plane for calibration
- Effectively measure scale factors per quark subjet Measure tagger Q W Н efficiency per-quark

arXiv:2202.03772 CMS-DP-2023-046

Global Particle Transformer algorithm uses learned "attention" (and pairwise features) to give more weight to certain particles, and disregard others \mathbf{x}^{l}

CMS BOOSTED HADRONIC HHBBVV SEARCH

Enables a new search for boosted $HH \rightarrow bbVV \rightarrow bb4q$ Provides second-best constraint on *HHVV* coupling κ_{2V}

<u>CMS-PAS-HIG-23-012</u> 9

UNIFIED PARTICLE TRANSFORMER SMALL-RADIUS JETS

- taus, regress jet energy, and estimate jet energy resolution
- Rectified normed gradient method (R-NGM) adversarial training used improve model robustness even when facing perturbed or **CMS** Simulation Preliminary 13.6 TeV
- for 2022+2023 data

Unified approach using same architecture to tag heavy flavor, tag hadronic

PARTICLE ID WITH TRANSFORMER

- standard methods

arXiv:2403.17436 arXiv:2401.01905

SYSTEMATIC-AWARE LEARNING

- Standard classifier training (CENNT) optimizes for signal vs. background discrimination without considering systematics and other effects that affect the ultimate figure: uncertainty Δr_s on a physics parameter r_s
- By implementing the analysis chain (including systematics) in a differentiable way, we can directly optimize for min. Δr_s in the neural network training!
 - Key choosing gradients for histogram operation $\hat{\mathbf{y}} \rightarrow H(\hat{\mathbf{y}})$

SYSTEMATIC-AWARE LEARNING

- uncertainty
- Total uncertainty improves by 25%

CMS-PAS-MLG-23-005

1.5

NORMED STATES TO MARKED FASTER SING TION Architectures Architectures Graphs ets (point clouds)

TOWARD HL-LHC

Simulation is a key drive

<u>CERN-LHCC-2022-005</u> 15

FASTCALOGAN

- Can we replace slow Geant4-based simulation of ATLAS calorimeter with fast generative ML?
- GAN/VAEs trained to parametrize the detector response to photons, electrons, and pions
- Good agreement between GAN/VAE and Geant4 for showers of different energies

<u>CSBS 8, 7 (2024)</u>

260

NEURAL NETWORK REWEIGHTING

- To reweight sample from $p_1(x)$ to sar need $w(x) = p_0(x)/p_1(x)$
- Likelihood ratio trick: a neural netw trained to distinguish the two sample this ratio: $f(x)/(1 - f(x)) \approx p_0(x)/p_1(x)$
- CMS use cases for top quark physics
 - Reweight MC for evaluation of systematic uncertainties
 - Reweight MC to higher-order theory predictions

$p_0(x) p_1(x)$ $x \in \Omega$ CMS-PAS-MLG-24-001 17

$$p_{0}(x)/p_{1}(x) = dN/dx \rightarrow w(x) \times dN/dx$$

$$dN/dx \rightarrow w(x) \times dN/dx$$
Samp
work classifier $f(x)$
les approximates

- Particle Flow Network:
 - system of the showered events

Normalizing Recoders Contraction Recoders Contracti FASTER SIMULATION quer quer Architectures Graphs ets (point clouds)

MEASUREMENTS & UNFOLDING WITH OMNIFOLD

- Omnifold used to unfold 24 Z+jets kinematic observables in ATLAS
 - Detector-level MC corrected by $\omega(\vec{x}_r)$ to match data
 - Particle-level MC corrected by $\nu(\vec{x}_p)$ to match $\omega(\vec{x}_r)$ -adjusted MC
 - Method repeated four more times
 - Final measurement is $\nu(\vec{x}_p)$ -weighted MC events

MEASUREMENTS & UNFOLDING WITH OMNIFOLD

Unbinned results provided as 24-dim. dataset on <u>Zenodo</u> and code on <u>GitLab</u> Enables measurement of new observables not presented in original paper!

INDER TO THE PROVIDENCE OF THE FASTER SIMULATION Architectures Graphs ats (point clouds) Supported to the set of the set o

background model independence

Some searches (train signal versus data)

many new ideas!

Most searches ("train" with simulations)

Train data versus background simulation

signal model independence

Credit: B. Nachman https://indico.cem/ch/event/1188153/

lion Supervised = Tull laber

- Semi-supervised = partial labels
- Weakly-supervised = noisy labels
- Unsupervised = no labels
 - Example: autoencoders compress data and then uncompress it
 - Assumption: if x is far from
 - Decoder(Encoder(x)), then x has low $p_{bkgd}(x)$

ANOMALY DETECTION: GENERAL STRATEGY

Start from data

Anti- k_{τ} jets with R = 0.8**Basic selection criteria**

Keep ~1% most anomalous events

5 different methods

CWoLa Hunting / TNT / CATHODE(-b) / VAE / QUAK

Fit *m*_{ii} spectrum and obtain significance

Improvement in cross section needed for 5σ discovery compared to inclusive dijet search by up to factor of 7

ANOMALY DETECTION: OBJECT PAIRS

- Autoencoder applied to physics-informed representation (rapidity-mass matrix)
- Anomaly score selection corresponding to 10 pb
- Model-independent limits placed in 9 final states: j+j, j+b, b+b, j+e, b+e, j+y, j+µ, b+µ, and b+y

PRL 132 (2024) 081801 25

ormed () ding to 10 pb 9 final states: , and b+**y**

e_T^{miss}	$m_T(j_1)$	$m_T(j_2)$	$\dots m_T(j_N)$	$m_T(\mu_1)$	$m_T(\mu_2)$	•••
$h_L(j_1)$	$e_T(j_1)$	$m(j_1, j_2)$	$\dots m(j_1, j_N)$	$m(j_1,\mu_1)$	$m(j_1,\mu_2)$	• • • 1
$h_L(j_2)$	$h(j_1, j_2)$	$\delta e_T(j_2)$	$\dots m(j_2, j_N)$	$m(j_2,\mu_1)$	$m(j_2,\mu_2)$	• • • •
• • •			,			
$h_L(j_N)$	$h(j_1, j_N)$		$\ldots \delta e_T(j_N)$	$m(j_N,\mu_1)$	$m(j_N,\mu_2)$	1
$h_L(\mu_1)$	$h(\mu_1, j_1)$	$h(\mu_1, j_2)$	$\dots h(\mu_1, j_N)$	$e_T(\mu_1)$	$m(\mu_1,\mu_2)$	m
$h_L(\mu_2)$	$h(\mu_2, j_1)$	$h(\mu_1, j_2)$	$\dots h(\mu_2, j_N)$	$h(\mu_1,\mu_2)$	$\delta e_T(\mu_2)$	m
• • •			•••			
$h_L(\mu_N)$	$h(\mu_N, j_1)$	$h(\mu_N, j_2)$	$\dots h(\mu_N, j_N)$	$h(\mu_N,\mu_1)$	$h(\mu_N,\mu_2)$	δ

ANOMALY DETECTION @ LEVEL-1 TRIGGER

- AXOL1TL anomaly detection algorithms for the level-1 trigger based on a variational autoencoder
- AXOL1TL rates and score distributions for 2024 data taking
- Pure contribution shows AXOLT1TL selects unique events relative to existing level-1 trigger
- Preference for high multiplicity events

CMS-DP-2023-079 CMS-DP-2024-XXX

26

NORMALIZED AUTOENCODER

- Autoencoders can be too good at reconstructing signal, meaning signal is not flagged as anomalous (high reconstruction error)
- Normalized autoencoder approach designed to mitigate this issue-align low reconstruction error phase space with background phase space

NORMALIZED AUTOENCODER

- Model data as $p_{\theta}(x) \propto \exp \left| -MSE(x, AE_{\theta}(x)) \right|$ and minimize $-\ln p_{\theta}(x)$
- In practice, approximately minimize this through clever reframing
 - Sample "negative" samples from $p_{\theta}(x)$ using MCMC
 - Sample "positive" samples from $p_{data}(x)$
 - Minimize difference in expected
 MSE between negative and positive samples
- With this change in training, can capture more signal as anomalous!

$x, AE_{\theta}(x) \Big]$ and minimize $-\ln p_{\theta}(x)$ this through clever reframing $p_{\theta}(x)$ using MCMC

INDER TOTAL CONTRACTOR OF THE INFORMATION OF THE IN FASTER SIMULATION Architectures Architectures Graphs ets (point clouds)

SUMMARY AND OUTLOOK

- Dizzying array of ML opportunities, innovations, and applications in LHC experiments, which directly impact physics results
- New ideas re-thinking what is the best way to apply ML
- Not only concerned with beformance but also
 - robustness interpretability, and insensitivity to

φ) to a rectangular grid that allows for an imageergy from particles are deposited in pixels in (n, ϕ) em as the pixel intensities in a greyscale analogue. rements that were st introduped by lour group [JHEP 02 (2015) 118], event reconstruction and computer vision. We ne jet-axis, and normalize each image, as is often scriminative difference in pixel intensities.

ANOMALY DETECTION: 5 COMPLEMENTARY METHODS

- Weakly supervised
 - CWoLa Hunting
 - Tag N' Train (TNT)
 - Classifying anomalies through outer density estimation (CATHODE)
- Unsupervised
 - Variational autoencoder with quantile regression (VAE-QR)
- Hybrid: encode "signal prior" based on expected signals
 - Quasianomalous knowledge (QUAK)

Inpu

GNN4ITK

GNN4ITK track reconstruction approaching standard CKF approach

ATLAS-IDTR-2023-06 33

