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PARTICLE PHYSICS + MACHINE LEARNING
▸ Particle physics has a long history of applying machine learning 
▸ From the early days in the 1980s  

applying neural networks to tracking 
▸ To the Higgs boson discovery in 2012  

applying boosted decision trees to  
identify H → ττ
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gence of the system has occurred. Convergence 1 — x2 of a fit to a circle through the four points
usually occurred in less than 10 iterations, i.e., less that determine the two neurons. No type 2 coeffi-
than 5 time constants. It is believed that the cient is assigned if the neurons in question are
overall performance can be improved by a more more than a few R~away from each other, or if
judicious choice of coefficients, as a rigorous opti- the radius of the fitted circle is less than several
mization has not beendone, times the length of the longer of the two neurons.
In an attempt to improve the performance for Because the radius of the fitted circle is de-

close together tracks, another type of coefficient, termined by the neurons themselves, only local
which we shall call type 2, was tried. These repre- smoothness is imposed, there is no restriction on
sent connections between neurons which do not the global functional form of the resulting path,
share an endpoint, but nevertheless are relatively (although the requirement of a constant radius of
near to each other. The value of the type 2 coeffi- curvature is an option that could be of interest in
cient between two neurons is proportional to the triggering, see section 9). The presence of type 2

a~ _
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Fig. 8. (a) Track finding with a model neural network. Total network energy, iteration number, and total elapsed time, T, are given.
Measured space points are represented by crosses, neurons by segments joining points, with a circle at the neuron head indicating
direction. Only neurons with output values greater than 0.1 are drawn. In practice, most neurons are found to have values near either

0 or 1. This 4 track event is perfectly reconstructed.
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INTRODUCTION & OUTLINE
▸ ML has changed the way we do physics searches and measurements 
▸ It is an essential and versatile tool that we use to improve existing 

approaches 
▸ It enables fundamentally new approaches 

▸ How are LHC experiments applying novel ML techniques? 
▸ Improved classification, calibration, & uncertainties 
▸ Faster simulation 
▸ Unfolding 
▸ Anomaly detection 
▸ Summary and outlook
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IMPROVED CLASSIFICATION 
FASTER SIMULATION 
UNFOLDING 
ANOMALY DETECTION 
SUMMARY AND OUTLOOK



FROM BDTS TO GNNS AND TRANSFORMERS
▸ Great strides made to leverage rich low-level information with graph neural 

networks and transformers for a variety of tasks including jet classification 
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▸ Major improvements demonstrated 
in CMS (ParticleNet/Transformer) 
and ATLAS (GN1/GN2)

ATLAS-PLOTS-FTAG-2023-01

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/


IMPACT OF GNN TAGGING 6

▸ Previously search for boosted  resonances 
reconstructed as large-radius jets with substructure  

▸ Now signal distinguished from the backgrounds using 
ParticleNet GNN discriminants 
▸ Stringent limits on universal  coupling

Z′ → qq

gq

PRL 119 (2017) 111802 
CMS-PAS-EXO-24-007
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 Large-R Calorimeter Jets

● Jets are clusters of objects that can be 
tracks, calorimeter deposits, etc

● Large-R Jets / Fat Jets
○ ΔR = 1.0 

● Boosted jets ≡ Jets with greater 
transverse momentum; decays product of 
resonances get bunched together in the 
lab frame.

● Boosted Large-R jets sought for in tagging 
of boosted heavy bosons like Higgs, W, Z 
and top quarks
○ If bosons are not boosted, large-R 

jets would not contain their decay 
products 13

Fig. 9: Boosted Large-R Jets 

https://cms-results.web.cern.ch/cms-results/public-results/publications/EXO-16-030/
https://cds.cern.ch/record/2904945?ln=en
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LANDSCAPE OF BOOSTED HIGGS BOSON FINAL STATES
▸ CMS ParticleNet has been 

successfully deployed to 
identify H→qq vs. QCD  
large-radius jets in mass-
agnostic way using a highly 
granular multiclassifier 

▸ Extend this same approach to 
a large array of final states, 
including H→VV, all-hadronic 
(3- or 4-prong), and semi-
leptonic modes
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GLOBAL PARTICLE TRANSFORMER 8
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▸ Global Particle Transformer algorithm uses learned “attention” (and pairwise 
features) to give more weight to certain particles, and disregard others  
in order to infer the origin of jets 

▸ Challenge to calibrate these taggers  
when there is no SM analogue for the  
signal we can isolate 
▸ New technique uses Lund jet plane  

for calibration 
▸ Effectively measure scale factors per  

quark subjet

https://arxiv.org/abs/2202.03772
https://cds.cern.ch/record/2866330?ln=en


▸ Enables a new search for boosted   
▸ Provides second-best constraint on  coupling 

HH → bbVV → bb4q
HHVV κ2V

CMS BOOSTED HADRONIC HHBBVV SEARCH 9
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UNIFIED PARTICLE TRANSFORMER SMALL-RADIUS JETS 10
CMS-DP-2024-066 
CMS-DP-2024-064

Jet energy regression

CMS-BTV 16

Figure 6: Median of the raw regressed jet energy response. UParT shows a constant 
improvement compared to ParticleNet, especially in the most extreme |η| bin. ParticleNet being 
trained with Run 2 MC samples, the combination of the new training algorithm and the usage of 
Run3 MC samples lead to a better response estimation. First studies on the calibration of the jet 

energy regression for PNet where performed in Ref. [21].

b-tagging robustness

CMS-BTV 20

Figure 9: b-tagging adversarial ROC curves. UParT trained with R-NGM adversarial strategy 
shows a substantial adversarial robustness improvement compared to the nominal training while 

conserving similar performance when applied on nominal samples

▸ Unified approach using same architecture to tag heavy flavor, tag hadronic 
taus, regress jet energy, and estimate jet energy resolution 

▸ Rectified normed gradient method (R-NGM) adversarial training  
used improve model robustness even when facing perturbed or  
mismodeled inputs 

▸ Calibration in progress 
for 2022+2023 data

Introduction

I Jet energy scale (JES) calibration is presented, based on the first reprocessing of data
collected in pp collisions at

p
s = 13.6 TeV for data taking periods Era C (5.0 fb�1) and

Era D (3.0 fb�1) of 2022, and prompt-reconstructed data from Era C (17.8 fb�1) of
2023. The results are shown for jets clustered from particle flow (PF) candidates using
the anti-kT algorithm with R = 0.4, and applying the Pileup Per Particle Identification
(PUPPI) algorithm ([1], [2], [3]) for pileup (PU) mitigation. Additionally, a new machine
learning algorithm based on ParticleNet (PNet) [4] is used for energy regression.

I Jets are calibrated sequentially with what are collectively referred to as Jet Energy
Corrections (JEC [5]), which consist of:

I detector response correction from simulation (MC Truth Correction)
I residual correction for differences between data and detector simulation (Relative

and Absolute Residual Corrections)
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PARTICLE ID WITH TRANSFORMER 11
arXiv:2403.17436 
arXiv:2401.01905

▸ Transformer for particle ID in ALICE  
can result in higher purity and efficiency than  
standard methods 

▸ Use domain adversarial neural networks  
to mitigate data-simulation differences

Softmax
Input Set

Embedding 

Transformer 
Encoder

Self-
Attention Classifier

Prediction 
score

Figure 3. The proposed model architecture. Layered blocks are applied separately to each vector in a set.
Single blocks are applied to their input as a whole.

and systematic, like particle properties falling outside the detector acceptance region, e.g., too low
transverse momentum, ?T, to reach outer detectors like TOF and TRD.

One can simply remove all incomplete samples from the input. However, this does not allow the
identification of samples with missing information, which can form the majority of data. Another
method is imputation, which introduces artificial bias to the initial dataset, which can disturb the
predictions of the ML algorithm. It is also possible to alter the neural network architecture. For
example, one can use a neural network ensemble, a set of classifiers, one per each subset of the
training dataset without missing data. The major drawback of this approach is computational
complexity, especially with a growing set of attributes with missing values.

To overcome the aforementioned shortcomings, in Ref. [21], we introduce a novel method
based on the attention mechanism, similar to the method introduced for a medical use-case in
AMI-Net [22]. The system overview is shown in Figure 3.

The first module is based on the Feature Set Embedding strategy proposed in Ref. [23]. Input
data samples are encoded into a set of feature-value pairs. Each pair represents a non-missing value
in the input sample and a one-hot encoded index of the feature corresponding to this value. Then,
a neural network with a single hidden layer computes embedding for each feature-value pair. The
embeddings place similar features close in the embedded space.

The Transformer [24] encoding module connects different features represented by a set of
embedding vectors and finds input patterns. For example, a detector signal has meaning only if the
momentum is within a particular range. The softmax function is applied to the attention output, a
variable-size set of vectors. An additional self-attention layer is used to merge these vectors into
one. Finally, the pooled vector is processed by the simple classifier described in Section 2.1.

The attention architecture was tested on data from a Monte Carlo simulation of proton–proton
collisions at

p
B = 13 TeV with a realistic simulation of the time evolution of the detector conditions

in the LHC Run 2 data-taking period. The simulation was performed with Pythia8 [25], the
Geant 4 [26] particle transport model, and general-purpose settings. The six most abundant particle
species were considered for comparison: pions, kaons, protons, and their antiparticles.

The results reported in Ref. [21] clearly show that machine learning algorithms easily outper-
form the standard method as measured by �1 metrics. The proposed attention architecture achieves

– 5 –

very high scores of �1, precision (purity), and recall (efficiency), comparable with other analyzed
ML models. At the same time, our model avoids the flaws of other solutions: artificial bias in
imputed and case-deleted data and potentially larger complexity of the neural network ensemble.

4 Domain Adversarial Neural Networks

Particle identification is used to discriminate particle species in both real experimental data and
Monte Carlo simulations. In particular, machine learning techniques presented in this article learn
on labeled simulated data but can also be applied to unlabeled experimental data. However, the
simulations often result in distributions of particle features shifted as compared to values registered
at the experiment. To mitigate this effect, standard PID methods utilize automated processes for
data domain alignment. For example, ALICE implemented a tuning method of simulated signals,
which shifts back simulated distributions to reproduce, on average, the collected data distributions
of selected variables.

Naturally, this is a limited solution, which does not allow for full domain alignment of all
particle features. Therefore, we will make use of a known machine learning technique called
domain adaptation, which aims to learn the discrepancies between two data domains, the labeled
source and the unlabeled target, and translate those to a single hyperspace. The desired classifier
is trained and applied to features from the combined latent space. Since the classifier works
independently of the initial data domains, it achieves similar performance on both the labeled and
unlabeled data (simulated and experimental data in our case).

In the world of neural networks, Domain Adversarial Neural Network (DANN) [27] is the
realization of the domain adaptation technique. As depicted in Figure 4, DANN is composed of
three neural networks. The feature mapping module maps the original input into domain invariant
features, which are provided to the particle classifier that outputs the particle type. At the same
time, the domain classifier enforces domain invariance of extracted features through adversarial
training.

Figure 4. Architecture of Domain Adversarial Neural Network.

Adversarial training requires DANN training to be split into two steps. First, the domain
classifier takes current features from the feature mapping network and assigns them domain labels,
whether the data comes from a real or a simulation source. Then, the weights of the domain classifier

– 6 –

associated PID observables exceeding a certain number of standard deviations, it is rejected. For
instance, if one intends to use both TPC and TOF signals, the PID selection would be defined as:q

n2
f,TPC + n2

f,TOF < ⇤, where ⇤ depends on desired balance between purity and efficiency, and
typically is in range of 2 to 3. Such an approach is justified when the separation between various
particle species is significantly large. However, in reality, the characteristics of different particle
species can overlap, and combining information from multiple detectors can become very complex.

2 PID with machine learning

A natural response to the difficulties with optimal particle selection is to use machine learning
(ML) algorithms, particularly the Bayesian method and neural networks (NN). In this view, particle
identification is a standard classification problem. Compared to a human analyzer, ML can utilize
more input particle features and learn more complex relationships between the variables. The
Bayesian approach [8] is available in the new ALICE software framework O2, but its flexibility is
limited. For this reason, we focused on neural networks, whose usage for particle identification was
explored only for very specific analysis cases in other experiments [9–11].

2.1 Neural network approach

The simplest model, and also the starting point of our analysis, is a single feed-forward network
trained and applied on Monte Carlo simulated data. We implemented a binary classifier, one
instance per each (anti)particle species and each combination of detector signals. The network
outputs a single value normalized to the range (0, 1) by applying the logistic function 5 (G) = 1

1+4�G .
The output value corresponds to the probability of the example corresponding to a specific particle
type based on a selected detector set of measurements (TPC only, TPC+TOF, TPC+TOF+TRD).
It is not possible to process different combinations of detector signals by a single network because
the choice of detector set impacts the size of the network input vector. The networks for each
(anti)particle species and detector setup are trained independently. Initial results reported in Ref. [12]

Figure 1. Components of the ALICE detector in its Run 2 configuration [4].

– 2 –

Table 4: Classification result for the three most common particle species.

(a) Pion identification on
complete data only.

Model Precision Recall F1

Delete 99.08 ± 0.07 99.67 ± 0.04 99.37 ± 0.01

Ensemble 99.11 ± 0.04 99.64 ± 0.06 99.38 ± 0.01

Mean 98.85 ± 0.09 99.69 ± 0.04 99.27 ± 0.04

Proposed 99.08 ± 0.02 99.64 ± 0.03 99.36 ± 0.01

Regression 99.02 ± 0.02 99.49 ± 0.14 99.25 ± 0.07

(b) Proton identification on
complete data only.

Model Precision Recall F1

Delete 99.23 ± 0.32 99.63 ± 0.05 99.43 ± 0.16

Ensemble 99.16 ± 0.24 99.76 ± 0.07 99.46 ± 0.13

Mean 99.22 ± 0.19 99.72 ± 0.04 99.47 ± 0.08

Proposed 99.28 ± 0.10 99.68 ± 0.09 99.48 ± 0.02

Regression 99.10 ± 0.09 99.65 ± 0.09 99.37 ± 0.07

(c) Kaon identification on
complete data only.

Model Precision Recall F1

Delete 96.93 ± 0.37 96.98 ± 0.26 96.95 ± 0.06

Ensemble 96.65 ± 0.38 97.82 ± 0.31 97.23 ± 0.10

Mean 96.83 ± 0.17 95.33 ± 0.67 96.08 ± 0.36

Proposed 96.03 ± 0.98 98.06 ± 0.72 97.04 ± 0.17

Regression 94.27 ± 0.98 97.01 ± 0.51 95.62 ± 0.39

(d) Pion identification on
data including incomplete
examples.

Model Precision Recall F1

Standard 99.99 ± 0.01 78.37 ± 0.01 87.87 ± 0.87

Ensemble 97.47 ± 0.25 99.46 ± 0.21 98.45 ± 0.04

Mean 97.31 ± 0.07 99.52 ± 0.07 98.40 ± 0.01

Proposed 97.49 ± 0.06 99.54 ± 0.05 98.50 ± 0.02

Regression 97.33 ± 0.06 99.49 ± 0.07 98.40 ± 0.04

(e) Proton identification on
data including incomplete
examples.

Model Precision Recall F1

Standard 99.40 ± 0.01 59.72 ± 0.03 74.61 ± 1.88

Ensemble 97.16 ± 0.46 93.74 ± 0.30 95.42 ± 0.12

Mean 97.85 ± 0.41 93.34 ± 0.32 95.54 ± 0.06

Proposed 97.80 ± 0.44 93.86 ± 0.27 95.79 ± 0.07

Regression 97.38 ± 0.40 93.67 ± 0.38 95.49 ± 0.15

(f) Kaon identification on
data including incomplete
examples.

Model Precision Recall F1

Standard 92.87 ± 0.01 60.37 ± 0.05 73.17 ± 1.57

Ensemble 91.18 ± 02.00 82.72 ± 01.42 86.74 ± 0.16

Mean 90.83 ± 01.71 82.32 ± 0.96 86.36 ± 0.34

Proposed 91.55 ± 0.71 83.68 ± 0.82 87.44 ± 0.14

Regression 91.17 ± 01.00 81.78 ± 0.21 86.22 ± 0.46

Table 5: Classification result for the three most common antiparticle species.

(a) Antipion identification on
complete data only.

Model Precision Recall F1

Delete 99.08 ± 0.04 99.67 ± 0.02 99.37 ± 0.01

Ensemble 98.93 ± 0.51 99.76 ± 0.16 99.34 ± 0.18

Mean 98.86 ± 0.11 99.69 ± 0.03 99.27 ± 0.04

Proposed 99.08 ± 0.04 99.67 ± 0.02 99.37 ± 0.03

Regression 99.04 ± 0.03 99.51 ± 0.05 99.28 ± 0.02

(b) Antiproton identification
on complete data only.

Model Precision Recall F1

Delete 98.75 ± 0.37 99.52 ± 0.17 99.13 ± 0.26

Ensemble 99.12 ± 0.08 99.53 ± 0.16 99.33 ± 0.10

Mean 98.79 ± 0.58 99.62 ± 0.18 99.20 ± 0.27

Proposed 99.25 ± 0.06 99.63 ± 0.20 99.44 ± 0.08

Regression 98.57 ± 0.33 99.64 ± 0.25 99.10 ± 0.13

(c) Antikaon identification on
complete data only.

Model Precision Recall F1

Delete 95.82 ± 0.69 96.84 ± 0.66 96.33 ± 0.11

Ensemble 96.14 ± 0.32 97.60 ± 0.24 96.87 ± 0.09

Mean 96.14 ± 0.45 94.77 ± 0.99 95.45 ± 0.33

Proposed 96.00 ± 0.11 97.85 ± 0.12 96.91 ± 0.11

Regression 93.85 ± 01.11 96.41 ± 0.18 95.11 ± 0.58

(d) Antipion identification
on data including incomplete
examples.

Model Precision Recall F1

Standard 99.99 ± 0.01 78.03 ± 0.01 87.66 ± 0.87

Ensemble 97.01 ± 0.87 99.56 ± 0.11 98.27 ± 0.42

Mean 97.23 ± 0.03 99.47 ± 0.03 98.34 ± 0.01

Proposed 97.38 ± 0.04 99.51 ± 0.02 98.44 ± 0.02

Regression 97.22 ± 0.15 99.52 ± 0.12 98.36 ± 0.03

(e) Antiproton identification
on data including incomplete
examples.

Model Precision Recall F1

Standard 99.24 ± 0.01 53.02 ± 0.03 69.12 ± 1.93

Ensemble 96.90 ± 0.24 92.41 ± 0.21 94.60 ± 0.10

Mean 97.24 ± 0.39 92.39 ± 0.15 94.75 ± 0.20

Proposed 97.51 ± 0.55 92.40 ± 0.74 94.89 ± 0.14

Regression 96.89 ± 0.50 92.36 ± 0.22 94.57 ± 0.13

(f) Antikaon identification
on data including incomplete
examples.

Model Precision Recall F1

Standard 92.22 ± 0.01 55.68 ± 0.04 69.44 ± 1.60

Ensemble 89.16 ± 01.51 81.06 ± 1.74 84.91 ± 0.48

Mean 89.75 ± 0.80 80.14 ± 1.18 84.67 ± 0.38

Proposed 90.86 ± 0.70 81.64 ± 0.63 86.00 ± 0.13

Regression 91.63 ± 0.58 79.29 ± 0.59 85.01 ± 0.13

For the case of incomplete examples, we compare our machine learning solutions
with the standard technique described in Section 2.2. For our comparison we used
the following selections: |n�,TPC| < 3 for particles with transverse momenta below

0.5 GeV/c and
q

n2

�,TPC
+ n2

�,TOF
< 3 for particles with pT � 0.5 GeV/c (in this case
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▸ Standard classifier training (CENNT) optimizes for signal vs. background 
discrimination without considering systematics and other effects that affect the 
ultimate figure: uncertainty  on a physics parameter  

▸ By implementing the analysis chain (including systematics) in a differentiable 
way, we can directly optimize for min.  in the neural network training! 
▸ Key choosing gradients for histogram operation 

Δrs rs

Δrs

ŷ → H(ŷ)

SYSTEMATIC-AWARE LEARNING 12

3. Systematic uncertainty aware neural network training 7

Initial dataset Classification Histogram POIs

CE

Figure 1: Flow chart of a (upper part) CENNT and (lower part) SANNT. In the figure Di

denotes the dataset, n (d) the number of events (observables) in the initial dataset DX; l the
number of classes after event classification; and h the number of histogram bins to enter the
statistical inference of the POIs. The function symbol P represents the multinomial distribution,
the symbol L has been defined in Eq. 1.

Rl⇥n. Since the CENNT corresponds to the maximum likelihood estimate of P({kl}, n, {pl}), it257

is asymptotically efficient in fulfilling the separation task based on the provided d-dimensional258

feature space X [46, 47], so that the compression from d to l happens with minimal loss of259

information relevant for the separation.260

For the analysis strategy discussed here, in a second step, the number of n events is reduced to261

h bins of a histogram262
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with:
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0, otherwise,
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A
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} introduced in Section 2.4 as D
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�
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�
), in the following.265

A flaw of this strategy remains in the objective of the CENNT, i.e. the separation of Ss from Bb266

based on P({kl}, n, {pl}), not being the same as the objective of the measurement, which is267

the minimization of Drs. The ansatz however remains successful, as long as the objectives of268

both estimates are approximately aligned, which can be assumed if the uncertainties in rs are269

dominated by their statistical component Dr
stat.
s .270

The prime target of a SANNT, as proposed e.g. in Ref. [5], is to become as congruent with271
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5. Extension for multiclass classification 17

Figure 6: Negative log of the profile likelihood �2D logL as a function of rs, taking into account
(red) all and (blue) only the statistical uncertainties in Drs. The results as obtained from CENNT
are indicated by the dashed lines, the median expected result of an ensemble of 100 repetitions
of the SANNT varying random initializations are indicated by the continuous lines. The red
and blue shaded bands surrounding the median expectations indicate 68% central intervals of
these ensembles. In the lower panels the underlying distributions to these central intervals are
shown.

following five background and two signal classes, as described in Section 2.4:539

• Events from background processes with two genuine t decays in the final state,540

estimated from the t-embedding method (genuine t);541

• Events from processes where the th candidate originates from a misidentified quark-542

or gluon-induced jet, estimated from the FF-method (jet ! th);543

• Events from tt production, which are not covered by any of the above mentioned544

background estimation methods;545

• Events from Z ! `` production;546

• Events from smaller background processes as discussed in Section 2.4 comprised547

into one residual background class (misc).548

4. Comparison with the cross entropy-based training setup 13

Figure 4: Expected distributions of ŷ( · ) for a binary classification task separating S from B,
for the (left) CENNT and (right) SANNT, prior to any fit to D

A
H

. The individual distributions
for S and B are shown by the non-stacked open blue and filled orange histogram, respectively.
In the lower panels of the figures the expected values of S/B + 1 are shown. The gray bands
correspond to the combined statistical and systematic uncertainty in B.

largest value in H7 most to the right of H, where S is expected to contribute ⇡ 5% to the overall441

yield. The largest effect of the uncertainty in B is expected in H6.442

In Fig. 4 (right) the same distributions after SANNT are shown. With respect to the CENNT,443

for both S and B, they are biased towards the left of the histogram and the expected largest444

effect of the uncertainties in B is shifted towards H2 and H3. We note that after SANNT there is445

no strict ordering any more of B to the left and S to the right of H, while due to the pretraining446

this ordering is still weakly preserved. We have checked that the linear correlation coefficients447

between ŷ( · ) after CENNT and after SANNT are 0.80 for S and 0.70 for B. This reduction in448

correlation relates to the impact that systematic variations have on Drs. We anticipate that the449

larger this impact is, the smaller the correlations will be.450

This observation gives the following heuristic insights into the work mechanism of the SANNT451

implemented here: Depending on their position in X events in DX are subject to systematic452

variations. For a well-defined classification task, S and B predominantly populate distinct453

subspaces SS, SB ⇢ X with some potential transition region of overlapping of events. For the454

given example illustrated by Fig. 4 ŷ( · ) provides a mapping from X to ŷ 2 [0; 1]. A fixed455

value of ŷ = k corresponds to the hyperplane of a discriminating boundary Ck in X. Without456

loss of generality, a systematic “up”-variation might move an event lying on Ck and belonging457

to B closer to SS. The “down”-variation in turn might move a similar event lying on Ck and458

belonging to S closer to SB. We observe that the elements of x are weighted such that these459

events will obtain values of ŷ . k, after SANNT. This explains two observations that can be460

made from Fig. 4: (i) the general shift of ŷ( · ) towards smaller values of ŷ as well as; (ii) the461

larger values of S/B + 1 for the events in bins H6 and H7, visible from the lower panel of Fig. 4462

(right). It might well be that more subtle effects steering the exploitation of features x by the463

NN-model also play into this observation.464

▸ CENNT optimizes for separation, while SANNT ( ) 
concentrates signal in bins with smaller background 
uncertainty 

▸ Total uncertainty improves by 25%

Δrs

SYSTEMATIC-AWARE LEARNING 13CMS-PAS-MLG-23-005
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TOWARD HL-LHC

▸ Simulation is a key driver of CPU needs for the HL-LHC  

▸ ML can be used to “short cut” simulation needs, e.g. additional samples for 
evaluating systematic uncertainties or higher order corrections
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New challenge: HL-LHC
2026: HL-LHC (High-Luminosity-LHC)

○ increased event rates (up to x10)
○ more complex events (up to μ=200, better detector)

Current algorithms of [at least] quadratic complexity: 
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FASTCALOGAN

▸ Can we replace slow Geant4-based simulation  
of ATLAS calorimeter with fast generative ML? 

▸ GAN/VAEs trained to parametrize the detector 
response to photons, electrons, and pions 

▸ Good agreement between GAN/VAE and  
Geant4 for showers of different energies
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▸ To reweight sample from  to sample from   
need  

▸ Likelihood ratio trick: a neural network classifier   
trained to distinguish the two samples approximates  
this ratio:  

▸ CMS use cases for top quark physics 
▸ Reweight MC for evaluation of systematic uncertainties 
▸ Reweight MC to higher-order theory predictions

p1(x) p0(x)
w(x) = p0(x)/p1(x)

f(x)

f(x)/(1 − f(x)) ≈ p0(x)/p1(x)

NEURAL NETWORK REWEIGHTING 17CMS-PAS-MLG-24-001

DESY. 15

Model reweighting
Generator/Predictions increasingly accurate and available (e.g. NNLOPS: ) 

• But difficult (and slow) to regenerate and resimulate all the MC samples 

Temporary solution:  

 Reweighting of Parton Level MC Simulations to higher-accuracy theory predictions 

MiNNLOPS

→

MiNNLO
hvq

MiNNLOhvq Both interfaced with PYTHIA 8, since 
the shower effect acts differently on 

the two generators

Only events based on the kinematics of tt system reweighted, inclusive over additional ME + PS radiations

NLOPS: POWHEG hvq (JHEP 06 (2010) 043)  NNLOPS: MiNNLO (JHEP 05 (2020) 143) →DESY. 5

Reweighting prescription

Reweight the nominal MC sample to its variations using event weigths 

Consider two MC samples, described by probability densities ,  for  (phase space): 

• Ideal event-level weight:   

p0(x) p1(x) x ∈ Ω

w(x) = p0(x)/p1(x)

Standard reweighting  Ratio in bins of two distributions 

• Sensitive to the binning chosen 

• Going beyond a small number of input dimensions is difficult 

→

dN/dx → w(x) × dN/dx
dN/dx

x

Sample 1 
Sample 2

https://cds.cern.ch/record/2904938?ln=en
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▸ Parton level information input to the 
Particle Flow Network:  
▸ 4-vector  and PID of  

system of the showered events 

▸ Method closes within ~2% of target 
NNLO distribution

(pT, η, ϕ, m) [t, t, tt]

HIGHER ORDER REWEIGHTING RESULTS 18

DESY. 8

Deep neural network using Classification for Tuning and Reweighting 

• Developed by A. Andreassen and B. Nachman  (PRD 101 (2020) 091901) 

Why DCTR? 

• Particle 4-vector and PID as inputs 

 Full phase space reweighting 

• NN parametrised with reweighting parameter  

 Continuous reweighting possible

→
θ

→

The Method: DCTR

Particle Flow Network (PFN) (JHEP 01 (2019) 121)

O1

O2

O3

O4

O5

O6

O7

O8

FS

.

.

.

.

.

.

.

.

.

100 100 100

FB

y

φE
F
N

P
F
N

P
F
N
-I
D

Φ1

Φ2

Φ3

Φ4

Φ5

Φ6

Φ7

Φ8

z

{{{

.

.

.

.

.

.

PID

100 100

CMS-PAS-MLG-24-001

https://cds.cern.ch/record/2904938?ln=en


Machine learning
in

particle physics

Represen-
tations/

Architectures

Jet imagesEvent
images

Sequences

Trees

Graphs

Sets (point
clouds) Equivariant

models

Physics-
inspired

Classification

Param-
etrized

classifiers

TargetsJet tagging

BSM
physics

Particle
identification

Cosmology,
astro-, and
cosmic-ray

physics

Neutrino
detectors

Direct dark
matter

detectors

Learning
strategies

Un-
supervised

Weak/semi-
supervised

Hyper-
parameter

opti-
mization

Reinforce-
ment

learning Quantum
machine
learning

Feature
ranking

Attention

Regular-
ization

Optimal
transport

Fast
inference

Hardware-
aware

learning

Deployment

Firmware/
software

Knowledge
distillation

Regression

Pileup

Calibration

Recasting

Matrix
elements

Parton
distribution
functions

Lattice
guage
theory

Function
approx-
imation

Symbolic
regression

Decorrelation
methods

Adversarial
training

Quantile
regression

Generative
modeling
/ density

estimation
Diffusion
models

Mixture
models

Phase
space

generation

Gaussian
processesGenerative

adversarial
networks

Anomaly
detection

Normalizing
flows

Auto-
encoders

Simulation-
based

inference

Parameter
estimation

Unfolding

Domain
adaptation

BSM
physics

Diff-
erentiable
simulation

Uncertainty
quantification

Inter-
pretability

Estimation

Mitigation

Uncertainty-
aware

learning

ML  
IN  

EXO

19

NOVEL ML 
TECHNIQUES

IMPROVED TAGGERS 
FASTER SIMULATION 
UNFOLDING 
ANOMALY DETECTION 
SUMMARY AND OUTLOOK



xr

ω( ⃗xr)

DataDetector-level MC

xp

-adjusted  
MC 

ω( ⃗xr)
Particle-level MC

ν( ⃗xp)

Repeat × 4

xp

OmniFold  
measurementParticle-level MC

ν( ⃗xp)
Final iteration

1
2

3 4

xr

ω( ⃗xr)

DataDetector-level MC

xp

-adjusted  
MC 

ω( ⃗xr)
Particle-level MC

ν( ⃗xp)

Repeat × 4

xp

OmniFold  
measurementParticle-level MC

ν( ⃗xp)
Final iteration

1
2

3 4

xr

ω( ⃗xr)

DataDetector-level MC

xp

-adjusted  
MC 

ω( ⃗xr)
Particle-level MC

ν( ⃗xp)

Repeat × 4

xp

OmniFold  
measurementParticle-level MC

ν( ⃗xp)
Final iteration

1
2

3 4

MEASUREMENTS & UNFOLDING WITH OMNIFOLD  
▸ Omnifold used to unfold 24  +jets kinematic observables in ATLAS 

▸ Detector-level MC corrected by  to match data 

▸ Particle-level MC corrected by  to match -adjusted MC 
▸ Method repeated four more times 

▸ Final measurement is -weighted MC events

Z
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MEASUREMENTS & UNFOLDING WITH OMNIFOLD  
▸ Unbinned results provided as 24-dim. dataset on Zenodo and code on GitLab 
▸ Enables measurement of new observables not presented in original paper!

21arXiv:2405.20041

https://zenodo.org/records/11507450
https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024
https://arxiv.org/abs/2405.20041
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36Unsupervised

Typically, the goal of these methods is to look 
for events with low p(background)

Unsupervised = no labels

M. Farina, Y. Nakai, D. Shih, 1808.08992; T. Heimel, G. 
Kasieczka, T. Plehn, J. Thompson, 1808.08979; + many more

One strategy (autoencoders) is to try to compress 
events and then uncompress them.  When x is far from 
uncompres(compress(x)), then x probably has low p(x).

LANDSCAPE OF BSM SEARCHES
▸ Supervised = full label information 
▸ Semi-supervised = partial labels 
▸ Weakly-supervised = noisy labels  
▸ Unsupervised = no labels 
▸ Example: autoencoders compress data and 

then uncompress it 

▸ Assumption: if  is far from 
, then  has low 

x
Decoder(Encoder(x)) x pbkgd(x)

23
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Suppose you want to search for a new signal process
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Credit: B. Nachman 
 https://indico.cern.ch/event/1188153/

https://indico.cern.ch/event/1188153/
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What we do

We’re looking for resonances 
in the dijet mass spectrum,

using ML techniques to 
enhance sensitivity to a 
broad class of signals

CMS-PAS-EXO-22-026

  

Analysis Strategy

3

Start from data
Anti-k

T
 jets with R = 0.8
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Methods: Variational Autoencoder

● Encodes up to 100 PF* constituents per jet

● Trained with jets from a QCD-dominated sideband (Δη > 1.4)

● Final score: lowest reconstruction loss of the two jets

● Background sculpting controlled with quantile regression
3* Particle Flow

14

Figure 5: The discovery sensitivity for the process A ! BC, using the anomaly detection meth-
ods, and a comparison to sensitivity of the inclusive search. In all signal processes, the mass of
the heavy resonance was set to m(A) = 3 TeV. For the BSM daughter particles, the masses of
the Y and Y0 were set to 170 GeV while the masses of the B0, R and H were set to 400 GeV. In
the top panel, for each method, the cross section which would have led to an expected 3s (5s)
excess is shown as a cross (square) marker. Sensitivities from six anomaly detection methods
(six colors) are compared to an inclusive dijet search in which no substructure selection is made
(black) and traditional substructure cuts targeting two-pronged (dark brown) or three-pronged
decays (tan). The expected 95% confidence level upper limits from the inclusive search are also
shown in the top panel as a dashed line. For all signal models at least one anomaly detection
method is able to achieve an expected 5s significance at a cross section at or below the upper
limit of the inclusive search. In the bottom panel is the ratio of the cross section sensitivity from
the inclusive search to the corresponding sensitivity for each method.

▸ Improvement in cross 
section needed for 

 discovery 
compared to 
inclusive dijet search 
by up to factor of 7

5 σ

https://cds.cern.ch/record/2892677?ln=en
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ANOMALY DETECTION: OBJECT PAIRS
▸ Autoencoder applied to physics-informed 

representation (rapidity-mass matrix) 
▸ Anomaly score selection corresponding to 10 pb 
▸ Model-independent limits placed in 9 final states: 

j+j, j+b, b+b, j+e, b+e, j+ɣ, j+μ, b+μ, and b+ɣ
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APPENDIX A

An example of the RMM matrix with two object types, jets (j) and muons (µ), is shown

in Eq. 1. The maximum number for each particle types in this example is fixed to a constant

N . The first element at the position (1,1) contains an event missing transverse energy scaled

by 1/
√
s, where

√
s is a center-of-mass collision energy. Other diagonal cells contain the

ratio eT (i1) = ET (i1)/
√
s, where ET (i1) is the transverse energy of a leading in ET object i

(a jet or µ), and transverse energy imbalances

δeT (in) =
ET (in−1)− ET (in)

ET (in−1) + ET (in)
, n = 2, . . . , N,

for a given object type i. All variables of the RMM are strictly ordered in transverse energy

i.e. ET (in−1) > ET (in). The non-diagonal upper-right values are m(in, jk) = Mi,n, j,k/
√
s,

where Mi,n, j,k are two-particle invariant masses. The first row contains transverse masses

MT (in) of objects in for two-body decays with undetected particles, scaled by 1/
√
s, i.e.

mT (in) = MT (in)/
√
s. The first column vector is hL(in) = C(cosh(y) − 1), where y is the

rapidity of a particle in, and C is a constant defined such that the average values of hL(in)

are similar to those of m(in, jk) and mT (i), which is important for certain algorithms that

require input values to have similar weights. The value h(in, jk) = C(cosh(∆y/2) − 1) is

constructed from the rapidity differences ∆y = yik − yjn between i and j.

More details about each variable of the RMM is given in Ref. [1]. The C++ library that

transforms the event records to the RMM is also available as [20].
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ANOMALY DETECTION @ LEVEL-1 TRIGGER CMS-DP-2023-079 
CMS-DP-2024-XXX 26

▸ AXOL1TL anomaly detection algorithms  
for the level-1 trigger based on a  
variational autoencoder 

▸ AXOL1TL rates and score distributions for 2024 
data taking 

▸ Pure contribution shows AXOLT1TL selects 
unique events relative to existing level-1 trigger 

▸ Preference for high multiplicity events

Selected by AXOL1TL, 
but not other L1

https://cds.cern.ch/record/2876546?ln=en
https://twiki.cern.ch/twiki/bin/view/CMS/AXOL1TL2024


NORMALIZED AUTOENCODER 27

▸ Autoencoders can be too good at reconstructing signal, meaning signal is not 
flagged as anomalous (high reconstruction error) 

▸ Normalized autoencoder approach designed to mitigate this issue—align low 
reconstruction error phase space with background phase space 

Signal lost 
due to low 

MSE

LHCB-FIGURE-2024-015

https://cds.cern.ch/record/2899695?ln=en


Signal lost 
due to low 

MSE

NORMALIZED AUTOENCODER 28

Signal 
lost due 
to low 
MSE

▸ Model data as  and minimize  

▸ In practice, approximately minimize this through clever reframing  
▸ Sample “negative” samples from  using MCMC 
▸ Sample “positive” samples from 

 
▸ Minimize difference in expected  

MSE between negative and positive  
samples 

▸ With this change in training, can  
capture more signal as anomalous!

pθ(x) ∝ exp [−MSE (x, AEθ(x))] −ln pθ(x)

pθ(x)

pdata(x)

LHCB-FIGURE-2024-015

https://cds.cern.ch/record/2899695?ln=en
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NOVEL ML 
TECHNIQUES

IMPROVED TAGGERS 
FASTER SIMULATION 
UNFOLDING 
ANOMALY DETECTION 
SUMMARY AND OUTLOOK



SUMMARY AND OUTLOOK
▸ Dizzying array of ML opportunities, innovations, and 

applications in LHC experiments, which directly impact 
physics results 

▸ New ideas re-thinking what is the best way to apply ML 
▸ Not only concerned with performance but also  

robustness, interpretability, and insensitivity to  
modeling uncertainties… 

▸ Use cases beyond classification including simulation, 
unfolding, anomaly detection, and more… 

▸ ML enables new searches and measurements that were 
impossible before

30
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Jet ETmiss
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Even more non-linearity: Going Deep

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

Repeat

Apply deep learning techniques on jet images! [3]

convolutional nets are a standard image 
processing technique; also consider maxout

Figure 5: The convolution neural network concept as applied to jet-images.

4.1 Architectural Selection

For the MaxOut architecture, we utilize two FC layers with MaxOut activation (the first with 256
units, the second with 128 units, both of which have 5 piecewise components in the MaxOut-operation),
followed by two FC layers with ReLU activations (the first with 64 units, the second with 25 units),
followed by a FC sigmoid layer for classification. We found that the He-uniform initialization [35]
for the initial MaxOut layer weights was needed in order to train the network, which we suspect is
due to the sparsity of the jet-image input. In cases where other initialization schemes were used, the
networks often converged to very sub optimal solutions. This network is trained (and evaluated) on
un-normalized jet-images using the transverse energy for the pixel intensities

For the deep convolution networks, we use a convolutional architecture consisting of three sequen-
tial [Conv + Max-Pool + Dropout] units, followed by a local response normalization (LRN) layer [8],
followed by two fully connected, dense layers. We note that the convolutional layers used are so called
“full” convolutions – i.e., zero padding is added the the input pre-convolution. Our architecture can
be succinctly written as:

[Dropout ! Conv ! ReLU ! MaxPool] ⇤ 3 ! LRN ! [Dropout ! FC ! ReLU] ! Dropout ! Sigmoid.

(4.1)
The convolution layers each utilize 32 feature maps, or filters, with filter sizes of 11 ⇥ 11, 3 ⇥ 3,

and 3 ⇥ 3 respectively. All convolution layers are regularized with the L
2 weight matrix norm. A

down-sampling of (2, 2), (3, 3), and (3, 3) is performed by the three max pooling layers, respectively.
A dropout [8] of 20% is used before the first FC layer, and a dropout 10% is used before the output
layer. The FC hidden layer consists of 64 units.

After early experiments with the standard 3 ⇥ 3 filter size, we discovered significantly worse
performance over a more basic MaxOut [7] feedforward network. After further investigation into larger
convolutional filter size, we discovered that larger-than-normal filters work well on our application.
Though not common in the Deep Learning community, we hypothesize that this larger filter size is
helpful when dealing with sparse structures in the input images. In Table 1, we compare di↵erent
filter sizes, finding the optimal filter size of 11⇥ 11, when considering the Area Under the ROC Curve
(AUC) metric, based on the ROC curve outlined in Sections 3 and 5.

– 8 –
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BACKUP

Machine learning
in

particle physics

Represen-
tations/

Architectures

Jet imagesEvent
images

Sequences

Trees

Graphs

Sets (point
clouds) Equivariant

models

Physics-
inspired

Classification

Param-
etrized

classifiers

TargetsJet tagging

BSM
physics

Particle
identification

Cosmology,
astro-, and
cosmic-ray

physics

Neutrino
detectors

Direct dark
matter

detectors

Learning
strategies

Un-
supervised

Weak/semi-
supervised

Hyper-
parameter

opti-
mization

Reinforce-
ment

learning Quantum
machine
learning

Feature
ranking

Attention

Regular-
ization

Optimal
transport

Fast
inference

Hardware-
aware

learning

Deployment

Firmware/
software

Knowledge
distillation

Regression

Pileup

Calibration

Recasting

Matrix
elements

Parton
distribution
functions

Lattice
guage
theory

Function
approx-
imation

Symbolic
regression

Decorrelation
methods

Adversarial
training

Quantile
regression

Generative
modeling
/ density

estimation
Diffusion
models

Mixture
models

Phase
space

generation

Gaussian
processesGenerative

adversarial
networks

Anomaly
detection

Normalizing
flows

Auto-
encoders

Simulation-
based

inference

Parameter
estimation

Unfolding

Domain
adaptation

BSM
physics

Diff-
erentiable
simulation

Uncertainty
quantification

Inter-
pretability

Estimation

Mitigation

Uncertainty-
aware

learning

NOVEL ML 
TECHNIQUES



  

Methods: Variational Autoencoder

● Encodes up to 100 PF* constituents per jet

● Trained with jets from a QCD-dominated sideband (Δη > 1.4)

● Final score: lowest reconstruction loss of the two jets

● Background sculpting controlled with quantile regression
3* Particle Flow

ANOMALY DETECTION: 5 COMPLEMENTARY METHODS 32

▸ Weakly supervised 
▸ CWoLa Hunting 
▸ Tag N’ Train (TNT) 
▸ Classifying anomalies through outer 

density estimation (CATHODE) 
▸ Unsupervised 
▸ Variational autoencoder with 

quantile regression (VAE-QR) 
▸ Hybrid: encode “signal prior” 

based on expected signals 
▸ Quasianomalous  

knowledge (QUAK)

Aritra Bal (aritra.bal@cern.ch)

10

AD5 - QUAK

● Every event mapped into a unique point in a 2D 
QUAK space

○ X-axis value comes from log-likelihood of event in 
normalizing flow trained on simulated QCD background 
events

○ Y-axis value comes from combining log-likelihood of event 
passed through 6 normalizing flows trained on different 
signal priors

○ Values normalized so background centered at (0,0)
● Select events by creating a unique 2D contour for 

each signal mass hypothesis designed to exclude 
background events

○ Contour created by using sidebands around hypothesis 
mass window (should be dominated by background)

Idea: train separate normalizing flows on background and signal MC

Use losses to construct a 2D QUAK space

  

Methods: Weak Supervision

Train a classi<er between data and
a background-like sample

● CWoLa: background taken from sidebands

● CATHODE: background interpolated
from sidebands

● Tag N’ Train: autoencoder preselection,
targets events with two anomalous jets

Fewer features for CATHODE than CWoLa/TNT

4
CWoLa: 1902.02634 / CATHODE: 2109.00546 / TNT: 2002.12376

CMS-PAS-EXO-22-026

https://cds.cern.ch/record/2892677?ln=en


GNN4ITK 33

▸ GNN4ITK track reconstruction approaching standard CKF approach
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Improving Computational Performance of a GNN Track 
Reconstruction Pipeline for ATLAS - ACAT 2024

GNN4ITk Pipeline

• Pipeline receives clusters = collections of energy deposits on silicon. These are associated 
with 3D spacepoints, to be used as nodes for stage 1 onwards

• Out of stage 3 we obtain a set of track candidates, each is an unordered set of spacepoints
• For processing in Athena track fitting chain, we associate these back to the original clusters, 

and order in increasing distance from beamspot origin

5

ATLAS-IDTR-2023-06

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2023-06/

