making the invisible visible

A very personal selection

Collider Detectors silicon: from transparent to massive

Dark Matter Detectors

Neutrino Detectors pixelizing light and charge

Petra Merkel – Detector Development

July 22nd, 2024

searching for particles and waves over 50 orders of magnitude

July 22nd, 2024

Petra Merkel – Detector Development

Collider Detectors

From Sand to Science

Silicon detectors are now the workhorse of collider detectors, spanning hundreds of m² from near transparent vertex detectors to massive calorimetry

State-of-the-art: ALICE ITS3

A truly cylindrical, near-transparent vertex detector

- 300mm wafer-scale CMOS MAPS fabricated from smaller chips using stitching
 - ✓ Silicon thinned down to $\leq 50\mu m$ making them flexible; bent to target radii
 - ✓ Power density <40mW/cm²
 - ✓ mechanically held in place by carbon foam
 - \checkmark Planning to use air cooling (~8m/s)
- Extremely low material budget: <0.07% X₀, homogeneous material distribution

July 22nd, 2024

+ air cooling

Sensor Stitching

- Chip size is traditionally limited by CMOS manufacturing ("reticle size")
 - typical size of few cm²
 - modules are tiled with chips
 - connected to a flexible printed circuit board
 - New developments: stitching
 - aligned exposures of a reticle to • produce larger circuits
 - actively used in industry
 - a 300mm wafer can house a chip to equip a full half-layer requires dedicated chip design
 - Final circuit is concatenation of different parts of the mask

Petra Merkel – Detector Development

Performance of bent sensors

- Excellent performance, comparable to flat sensor •
- Spatial resolution 5μm
- Efficiency >99.99%

July 22nd, 2024

Petra Merkel – Detector Development

More Intelligent Detectors

Pack more and more functionality onto chip

- communication, power distribution, monitoring
- optical and wireless
- FPGA and AI/ML functions now straightforward to include
- Big challenge: SEU tolerance, power consumption

 \rightarrow Next-gen ASICs will be developed in 28nm technology

Use Machine Learning on ASIC for physics motivated data reduction on detector

filter on e.g. incidence angle, pt, hit position, uncertainty, time information, etc.

gies with Neutrino and DM Detectors and Medical Imaging

need for on-chip data storage

Petra Merkel – Detector Development

On-chip

memory

Serial power

regulators

mass

Dark Matter Detectors

July 22nd, 2024

50 orders of magnitude to hide in

Detecting sub-GeV Particle-like DM

Low threshold technologies to explore the dark sector:

- Very promising: Skipper-CCDs
- Extremely low noise \rightarrow single electron/photon counting
- Downside: slow readout

 \rightarrow R&D to speed up, e.g. regional r/o, energy-dependent r/o, double-sided r/o, background suppression through masking or freezing July 22nd, 2024

Petra Merkel – Detector Development

Exciting first Results

- Different applications call for different levels of noise or dynamic range sensitivities
- For low-mass DM low threshold and large target mass are key
- World-leading first science results from
 - SENSEI@MINOS (2g detector, shallow underground)
 - DAMIC-M (18g detector, 1700m deep@Modane)
 - SENSEI (100g, 2000m deep@SNOLAB)
 - (1kg, 1700m deep@Modane)
 - OSCURA (10kg, 2000m deep@SNOLAB)
 - well motivated sub-GeV DM models •

Detecting wave-like DM

Suite of axion search experiments, based on resonant cavity detectors in strong magnetic fields

- cavity size matched to axion Compton wavelength
- Axion-to-photon conversion power proportional to volume
- \rightarrow each experiment limited to narrow frequency band in sensitivity, need for tuning rods or modular approach

 \rightarrow this technology scales poorly to high mass

July 22nd, 2024

Idea: convert DM and count single photons

- Axions interact with a static magnetic field producing an oscillating parallel electric field in free space
- A conducting surface in this field emits a planar wave perpendicular to the surface
- Radiated power is low, but no detector tuning required!
- Need for powerful single photon sensors: e.g. SNSPD, KID, or Bolometers, Heterodyne, etc. for signal detection

July 22nd, 2024

Broadband Coaxial Dish Antenna

GigaBREAD: use coaxial dish antenna as optical concentrator for solenoid magnets

- Rays emitted from cylindrical inner surface of solenoid are focused to a point after two reflections
- Employ different single photon sensors to cover broad frequency range
- First dark photon results:

July 22nd, 2024

Petra Merkel – Detector Development

Large Mass Noble Element Detectors

- Typical reconstruction data based on S1 (prompt) scintillation light), S2 (ionization signal), x/y position (hit pattern), z position (Δt of S1 and S2), energy (S1+S2/weight), recoil type (S1/S2)
- Reaching Neutrino Floor requires massive new detectors (very limited supplies of ultra-pure Xenon)
- Worthwhile to look into alternative ideas

Blue Sky R&D Thinking outside the (Phase Diagram) Box

- Background limitations and Xe supply gave rise to smaller/more compact solid Xe detector: e.g. CrystaLiZe R&D (UT Austin, LBNL)
- Idea: crystalline Xe solid/vapor two-phase TPC

 \rightarrow radon excluded from solid bulk (reduction of Rn-chain daughters x100); lead frozen in

July 22nd, 2024

Source	Expected Events	Fit Result
²¹⁴ Pb	164 ± 35	- Dominar
212 Pb	18 ± 5	
$^{85}\mathrm{Kr}^{\star}$	32 ± 5	-
Det. ER	1.4 ± 0.4	-
β decays + Det. ER	215 ± 36	222 ± 16
u ER	27.1 ± 1.6	27.2 ± 1.6
127 Xe**	9.2 ± 0.8	9.3 ± 0.8
$^{124}\mathrm{Xe}$	5.0 ± 1.4	5.2 ± 1.4
$^{136}\mathrm{Xe}$	15.1 ± 2.4	15.2 ± 2.4
${}^8\mathrm{B}~\mathrm{CE} \nu\mathrm{NS}$	0.14 ± 0.01	0.15 ± 0.01
Accidentals	1.2 ± 0.3	1.2 ± 0.3
Subtotal	273 ± 36	280 ± 16
$^{37}\mathrm{Ar}$	[0, 288]	$52.5^{+9.6}_{-8.9}$
Detector neutrons	$0.0^{+0.2}$	$0.0^{+0.2}$
$30{ m GeV/c^2}~{ m WIMP}$		$0.0^{+0.6}$
Total		333 ± 17

Permanently removable w/ dis

Preliminary Results

- Operation ~20K below LXe
- Matching scintillation behavior, ionization works as well; hints at higher gain, but need calibration
- Drift speed is faster in crystal \rightarrow less pileup
- Steady decay of Rn in crystal \rightarrow demonstrated exclusion >x1000 of ²²⁰Rn
- Promising start, but lots of open questions remain, especially of scaling up in size

July 22nd, 2024

Petra Merkel – Detector Development

Neutrino Detectors

The DUNE Challenge

Need to achieve ~4mm spatial granularity for stadium-sized detectors (50,000m³) \rightarrow ~1 trillion spatial voxels

- LAr TPCs use traditionally projective 2D r/o through wire planes
- Achieve much higher spatial precision using pixelated r/o
 - true 3D imaging
 - continuous r/o, ~100% uptime
 - intrinsically sparse data, low data volume
 - improved signal fidelity (S/B)
 - enhanced low-energy program

Petra Merkel – Detector Development

ging tr

σ

Example

Intense R&D Phase

 For example: <u>LarPix</u> and <u>Q-Pix</u> R&D Collaborations

• Pixel r/o requires high channel density:

- low noise (cryogenic-compatible amplifiers)
- multiplexing (limited number of cables and feedthroughs)
- extremely low-power electronics (limit heat)
- reliability (largely inaccessible)
- scalability (need to cover 100-1000m2, >107 pixels @ <\$0.10/pixel)

Raw 3D Cosmic Ray images in LArPix prototype LArTPC

Simulation of one beam pulse in DUNE Near Detector LArTPC

(Pileup of ~50 neutrino interactions)

Summary

- very massive silicon detectors
- R&D of many different technologies crucial for combing through 50 orders of magnitude on the hunt for Dark Matter
- rejection to understand the nature of neutrinos

Many R&D challenges to enable science at future colliders with near-transparent to

Crucial R&D into lowering thresholds, increased spatial resolution and background

Lots of Synergies across the board of HEP and beyond. Most efficient if we all work together!

Petra Merkel – Detector Development