



# Present and approved accelerator facilities

Sergei Nagaitsev EIC Technical Director Brookhaven National Laboratory

23 July 2024



## Particle Physics Accelerator Facilities

- Colliders
- High-intensity accelerators
  - Targets
- Specialty beams like Muon g-2, pEDM, antiprotons





Example: Fermilab Accelerator Complex and Experiments



## Many thanks to colleagues:

Mike Lamont (CERN) Tadashi Koseki (KEK) Alexander Valishev and Mary Convery (Fermilab) Wolfram Fischer (BNL) Catia Milardi (INFN) Valeri Lebedev (JINR) Chenghui Yu (IHEP)



## Summary up front

Colliders are focused of achieving the highest average luminosity through reliable operations and continuous implementation of innovations:

- Nano beams;
- Crab waist;
- Crab cavities;
- Beam screens and vacuum coatings to suppress electron cloud;

For high-intensity beams, the focus is on delivering >1 MW proton beams for neutrino experiments and on developing and operating highpower beam targets for high-radiation and high-stress environments



## Colliders

## For factories and high-energy collisions e<sup>+</sup>e<sup>-</sup>, hh, eh



## **Colliders – Important considerations**

- Energy
- Luminosity
  - Target density in collider >10 orders of magnitude lower than in fixed target
- Interaction Region design
  - Detector space
  - Experimental background
  - Forward particles
  - •

. . .

National Laboratory

Also

Cost

. . .

- Reliability
- Flexibility (energy, species for ion colliders)
- Energy efficiency / operating cost

|  | Present | ( <b>7</b> ) |
|--|---------|--------------|
|--|---------|--------------|

Approved

| Colliders    | Species    | $E_{cm}$ , GeV | C, m  | $\mathcal{L}, 10^{32}$ | Years     | Host lab, country   |
|--------------|------------|----------------|-------|------------------------|-----------|---------------------|
| AdA          | $e^+e^-$   | 0.5            | 4.1   | $10^{-7}$              | 1964      | Frascati/Orsay      |
| VEP-1        | $e^-e^-$   | 0.32           | 2.7   | $5 \times 10^{-5}$     | 1964-68   | Novosibirsk, USSR   |
| CBX          | $e^-e^-$   | 1.0            | 11.8  | $2 \times 10^{-4}$     | 1965-68   | Stanford, USA       |
| VEPP-2       | $e^+e^-$   | 1.34           | 11.5  | $4 \times 10^{-4}$     | 1966-70   | Novosibirsk, USSR   |
| ACO          | $e^+e^-$   | 1.08           | 22    | 0.001                  | 1967-72   | Orsay, France       |
| ADONE        | $e^+e^-$   | 3.0            | 105   | 0.006                  | 1969-93   | Frascati, Italy     |
| CEA          | $e^+e^-$   | 6.0            | 226   | $0.8 	imes 10^{-4}$    | 1971-73   | Cambridge, USA      |
| ISR          | pp         | 62.8           | 943   | 1.4                    | 1971-80   | CERN                |
| SPEAR        | $e^+e^-$   | 8.4            | 234   | 0.12                   | 1972-90   | SLAC, USA           |
| DORIS        | $e^+e^-$   | 11.2           | 289   | 0.33                   | 1973-93   | DESY, Germany       |
| VEPP-2M      | $e^+e^-$   | 1.4            | 18    | 0.05                   | 1974-2000 | Novosibirsk, USSR   |
| VEPP-3       | $e^+e^-$   | 3.1            | 74    | $2 \times 10^{-5}$     | 1974-75   | Novosibirsk, USSR   |
| DCI          | $e^+e^-$   | 3.6            | 94.6  | 0.02                   | 1977-84   | Orsay, France       |
| PETRA        | $e^+e^-$   | 46.8           | 2304  | 0.24                   | 1978-86   | DESY, Germany       |
| CESR         | $e^+e^-$   | 12             | 768   | 13                     | 1979-2008 | Cornell, USA        |
| PEP          | $e^+e^-$   | 30             | 2200  | 0.6                    | 1980-90   | SLAC, USA           |
| $Sp\bar{p}S$ | $p\bar{p}$ | 910            | 6911  | 0.06                   | 1981-90   | CERN                |
| TRISTAN      | $e^+e^-$   | 64             | 3018  | 0.4                    | 1987-95   | KEK, Japan          |
| Tevatron     | $p\bar{p}$ | 1960           | 6283  | 4.3                    | 1987-2011 | Fermilab, USA       |
| SLC          | $e^+e^-$   | 100            | 2920  | 0.025                  | 1989-98   | SLAC, USA           |
| LEP          | $e^+e^-$   | 209.2          | 26659 | 1                      | 1989-2000 | CERN                |
| HERA         | ep         | 30 + 920       | 6336  | 0.75                   | 1992-2007 | DESY, Germany       |
| PEP-II       | $e^+e^-$   | 3.1 + 9        | 2200  | 120                    | 1999-2008 | SLAC, USA           |
| KEKB         | $e^+e^-$   | 3.5 + 8.0      | 3016  | 210                    | 1999-2010 | KEK, Japan          |
| VEPP-4M      | $e^+e^-$   | 12             | 366   | 0.22                   | 1979-     | Novosibirsk, Russia |
| BEPC-I/II    | $e^+e^-$   | 4.6            | 238   | 10                     | 1989-     | IHEP, China         |
| DAΦNE        | $e^+e^-$   | 1.02           | 98    | 4.5                    | 1997-     | Frascati, Italy     |
| RHIC         | p, i       | 510            | 3834  | 2.5                    | 2000-     | BNL, USA            |
| LHC          | p, i       | 13600          | 26659 | 210                    | 2009-     | CERN                |
| VEPP2000     | $e^+e^-$   | 2.0            | 24    | 0.4                    | 2010-     | Novosibirsk, Russia |
| S-KEKB       | $e^+e^-$   | 7+4            | 3016  | 6000*                  | 2018-     | KEK, Japan          |
| NICA         | p, i       | 13             | 503   | 1*                     | 2024(tbd) | JINR, Russia        |
| FIC          | 00         | $10 \pm 975$   | 3834  | 105*                   | 9039(+bd) | BNL USA             |

(adapted from [Shiltsev and Zimmermann, 2021]).

## **Colliders:** history



[V. Shiltsev and F. Zimmermann, Rev. Mod. Phys. 93, 015006 (2021); V. Shiltsev, Phys. Usp. 55, 965 (2012)]

## **Colliders e<sup>+</sup>e<sup>-</sup> (factories):** VEPP-2000, VEPP-4M, BEPC-II, DAΦNE, SuperKEKB

[Reported numbers, not design]

|                                                                      | <b>DA</b> Φ <b>NE</b> | <b>VEPP-2000</b>      | BEPC-II                    | VEPP-4M        | SuperKEKB   |
|----------------------------------------------------------------------|-----------------------|-----------------------|----------------------------|----------------|-------------|
| Start of operation [year]                                            | 1999                  | 2010                  | 2008                       | 1994           | 2018        |
| Species                                                              | e+e-                  | e+e-                  | e+e-                       | e+e-           | e+e-        |
| Circumference [m]                                                    | 97                    | 24                    | 238                        | 366            | 3016        |
| Beam energy [GeV]                                                    | 0.51                  | 1                     | <b>1.89</b><br>(2.474 max) | 6              | 4 / 7       |
| CoM energy [GeV]                                                     | 1.02                  | 2                     | <b>3.78</b><br>(5.56 max)  | 12             | 10.58       |
| Average beam current [mA]                                            | 800 / 1250            | 160                   | 851                        | 80             | 1400 / 1000 |
| Peak luminosity [10 <sup>30</sup> cm <sup>-2</sup> s <sup>-1</sup> ] | 453                   | 50                    | 1000                       | 20             | 3810        |
| Focus                                                                | $\Phi$ meson          | u,d,s<br>interactions | tau-charm                  | Y(1S)<br>meson | B meson     |



[PDG, Tables 32.1, 32.3;

Q. Qin, "Overview of the low energy colliders", proceedings eeFACT2016, Daresbury (2016)]



#### **DAONE Parameters & Achievements**

| Energy (each beam MeV)                                                     | 510       |
|----------------------------------------------------------------------------|-----------|
| $\theta_{cross}$ (mrad)                                                    | 50        |
| $\epsilon_{x}$ (mm mrad)                                                   | 0.28      |
| $\Phi_{Piwinski}$                                                          | 1.7       |
| β* <sub>x/y</sub> (mm)                                                     | 240. / 8. |
| Maximum Stored Currents<br>e <sup>-</sup> / e <sup>+</sup> (A)             | 2.4 / 1.4 |
| Bunch Spacing (nsec)                                                       | 2.7       |
| Maximum Luminosity<br>(10 <sup>32</sup> cm <sup>-2</sup> s <sup>-1</sup> ) | 4.53      |
| ξ <sub>y</sub> max                                                         | 0.09      |



### DAΦNE



The Frascati lepton collider DA $\Phi$ NE has been powering physics research at the LNF since more than 20 years.

This was possible since in 2008 DA $\Phi$ NE implemented and successfully tested, with detectors of different complexity, a new collision scheme: the *Crab-Waist Collision Scheme*, which has become, de facto, one of the main concept to operate present and future colliders.

Presently, DAFNE has completed a physics run delivering 1.5 fb<sup>-1</sup> to the SIDDHARDA-2 experiment aiming at performing the first-ever measurement of kaonic deuterium X-ray transitions to the ground state level.

#### Ongoing discussion concerning $DA\Phi NE$ future

In the next future DA $\Phi$ NE might be used for short periods, 4-5 months per year. Operations might be be dedicated at:

- studying physics problems and innovative technologies,
- testing innovative collision concepts,
- implementing short term experiments about fundamental and applied physics,
- training young generations of particle accelerator physicists.

DAFNE Synchrotron Light Facility could be also operated.

DAΦNE LINAC will continue to power two **Beam Test Facility lines.** 

This plan requires a minimal refurbishment of the accelerator complex that can also be implemented progressively

Maintaining DAΦNE infrastructure operative could be also very much synergic with Future CERN q developments in the lepton colliders field.

## Innovation at low-energy colliders from INFN DA $\Phi$ NE

Long-range beam-beam compensation with wires improves beam lifetime

 Crab waist increases luminosity by x3







[C. Milardi et al, "DAΦNE lifetime optimization with octupoles and compensating wires", CARE-HHH-APD IR'07 Workshop, Frascati (2007); M.Zobov, C. Milardi, P. Raimondi et al., Phys.Rev.Lett. 104 (2010) 174801;
 Q. Qin, "Overview of the low energy colliders", proceedings eeFACT2016, Daresbury (2016)]

## **BINP VEPP-2000/4M**

Round beams to mitigate beam-beam Beam shaking to avoids beam size flip-flip VEPP-4M Linear VEPP-3 Accelerators



Table 1: VEPP-2000 Design Parameters (at E = 1 GeV)

Table 1: Parameters of VEPP-4M for Different Energies

| -                                     |                                                   |                |     |           |                     |                             |
|---------------------------------------|---------------------------------------------------|----------------|-----|-----------|---------------------|-----------------------------|
| Circumference, C                      | 24.39 m                                           | Energy         | 2.3 | 3.5       | 4.75                | GeV                         |
| Energy range, E                       | 150–1000 MeV                                      | Betatron Tunes |     | 8.54/7.57 |                     |                             |
| Number of bunches                     | $1 \times 1$                                      | Nat. Chroms    |     | -14/-20   |                     |                             |
| Particles per bunch, $N$              | $1 \times 10^{11}$                                | Comp. Factor   |     | 0.0168    |                     |                             |
| Beta-functions at IP, $\beta^*_{x,y}$ | 8.5 cm                                            | Hor. Emit.     | 42  | 100       | 180                 | nm·rad                      |
| Betatron tunes, $v_{x,y}$             | 4.1, 2.1                                          | Energy Spread  | 3.7 | 6.5       | 7.5                 | ·10 <sup>-4</sup>           |
| Beam emittance, $\varepsilon_{ry}$    | $1.4 \times 10^{-7} \text{ m rad}$                | Bunch Length   |     | 4         |                     | cm                          |
| Beam-beam parameters Exa              | 0.1                                               | Bunch Current  | 6   | 9/15      | 15                  | mA                          |
| Luminosity $L$                        | $1 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$ | Luminosity     | 0.5 | 1.2/2.0   | $0.6 \cdot 10^{31}$ | $\cdot10^{31}cm^{-2}s^{-1}$ |
| 200000,2                              |                                                   |                |     |           |                     |                             |

[Y. Maltseva, RuPAC 2018; D.B. Shwartz, IPAC2021; P.A. Piminov, IPAC2021]



Table 3: Main Design Parameters of the BEPCII

| Parameters                                     | Collision          | SR               |
|------------------------------------------------|--------------------|------------------|
| Beam energy (GeV)                              | 1.89               | 2.5              |
| Circumference (m)                              | 237.53             | 241.13           |
| Beam current (A)                               | 0.91               | 0.25             |
| Bunch current (mA) / No.                       | 9.8 / 93           | $\sim 1/160-300$ |
| Natural bunch length (mm)                      | 13.6               | 12.0             |
| RF frequency (MHz)                             | 499.8              | 499.8            |
| Harmonic number                                | 396                | 402              |
| Emittance (x/y)(nm·rad)                        | 144/2.2            | 140              |
| $\beta$ function at IP (x/y) (m)               | 1.0/0.015          | 10.0/10.0        |
| Luminosity (cm <sup>-2</sup> s <sup>-1</sup> ) | 1×10 <sup>33</sup> |                  |

[Q. Qin, eeFACT2016]

## Status of **BEPCII**

#### Main parameters of BEPCII

| History o | f peak | luminosity | and | beam | current | of | BEPCII |
|-----------|--------|------------|-----|------|---------|----|--------|
|           |        |            |     |      |         |    |        |

| Donomotors                                                  | Design                                 | Achieved        |                 |        |  |
|-------------------------------------------------------------|----------------------------------------|-----------------|-----------------|--------|--|
| rarameters                                                  | Design                                 | BER             | BPR             |        |  |
| Beam energy (GeV)                                           | 1.0-2.1, 1.89                          | 0.92-2.47, 1.89 | 0.92-2.47, 1.89 | (MA)   |  |
| Beam current (mA)                                           | 910                                    | 950             | 950             | irrent |  |
| Bunch number                                                | 93                                     | 118             | 118             | eam ci |  |
| Beam-beam parameter                                         | 0.04                                   | 0.041           |                 |        |  |
| $\beta_x^*/\beta_y^*$ (m)                                   | 1.0/0.015                              | 1.0/0.0135      | 1.0/0.0135      | ŝ      |  |
| Inj. Rate (mA/min)                                          | 200 e <sup>-</sup> / 50 e <sup>+</sup> | >1000           | >200            |        |  |
| Lum. (× 10 <sup>33</sup> cm <sup>-2</sup> s <sup>-1</sup> ) | 1.0                                    | 1.1             |                 |        |  |







Courtesy of Chenghui Yu

## Status pf BEPCII upgrade project



#### Key Technologies: Double beam power & Optics upgrade & New high gradient of magnets

| <b>2020</b><br>White Paper of BESIII | <b>Jun. 2021</b><br>Feasibility Study Report | Apr. 2022   Design Finished          | Jul. 2024<br>Shutdown for Installation |
|--------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------|
|                                      | -                                            | BEPCII keep running                  |                                        |
| Internal Review 🔿 May. 2020          | of Accelerator Project Approv                | ed Fabrication Finished<br>Jun. 2024 | Commissioning <b>Jan. 2025</b>         |
| National Laboratory                  | Timeline of BE                               | PCII operation and it                | ts upgrade Courtesy of Chenghui Yu 13  |

Institute of High Energy Physics Chinese Academy of Sciences

## SuperKEKB - design

- 40x KEKB luminosity
- "Nano-beam" collision scheme with
- Low emittance, new e<sup>+</sup> damping ring
- Large Piwinski angle
- Crab waist



|                                                                    | SuperKEKB<br>design |        |  |  |  |  |
|--------------------------------------------------------------------|---------------------|--------|--|--|--|--|
|                                                                    | LER                 | HER    |  |  |  |  |
| I <sub>beam</sub> [A]                                              | 3.6                 | 2.6    |  |  |  |  |
| # of<br>bunches                                                    | 2500                |        |  |  |  |  |
| I <sub>bunch</sub> [mA]                                            | 1.440               | 1.040  |  |  |  |  |
| β <b>y* [mm]</b>                                                   | 0.27                | 0.30   |  |  |  |  |
| ξγ                                                                 | 0.0881              | 0.0807 |  |  |  |  |
| Luminosity<br>[10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> ] | 80                  |        |  |  |  |  |
| Integrated<br>Luminosity [ab <sup>-1</sup> ]                       | 50                  |        |  |  |  |  |



[Y. Ohnishi, et al., Eur. Phys. J. Plus, 136:1023 (2021)

Y. Funakoshi et al., "The SuperKEKB has broken the world record of the luminosity" IPAC 2022 (2022)]



O

#### **Operation Status of SuperKEKB**



Long Shutdown 1: Improvements of the Belle II detector and the SuperKEKB accelerator



Design based on "nano-beam" collision scheme:

- Two beams collide at the interaction point (IP) with a large horizontal crossing angle of 83 mrad.

- A very strong vertical focusing is applied at the IP to squeeze the beam.



The nano beam collision scheme is effective to reduce power consumption.

Courtesy of Tadashi Koseki

#### SuperKEKB challenges: Sudden Beam Loss

#### Sudden Beam Loss - The serious obstacle to increase luminosity

- It has occurred within approximately 2-turn (~20 µs) before the beam abort.
- Small beam orbit displacements (~0.1mm) in horizontal and vertical direction has been observed before 1-2 turns of the beam loss.
- Quick increase in the vertical beam size has been observed by a fast beam size monitor.
- It is more common in LER, but has also occurred in HER.
- It could quench the superconducting coils in QCS, and damage vertical collimator heads and pixel detector system at the innermost part of the Belle II detector.



We have recently found that the most suspicious cause of SBL is the dusts from the clearing electrodes in the wiggler section.

The electrodes are mounted in the beam ducts to mitigate electron cloud. They are very thin electrodes with 0.1 mm tungsten on 0.2 mm  $AI_2O_3$ .





Countermeasures to the SBL will be implemented during the 2024 summer maintenance period.

The target luminosity in JFY2024 is  $\sim 1 \times 10^{35}$  cm<sup>-2</sup>s<sup>-1</sup>.

## Colliders hh and eh: RHIC, LHC, EIC, NICA

[Reported numbers, EIC – design]

|                                                                      | RHIC<br>pp (actual)    | LHC<br>pp<br>(actual) | RHIC<br>AA (actual)                                                               | LHC<br>AA (actual)       | EIC<br>ep, eA (design)                    | NICA<br>pp, dd, AA |
|----------------------------------------------------------------------|------------------------|-----------------------|-----------------------------------------------------------------------------------|--------------------------|-------------------------------------------|--------------------|
| Start of operation [year]                                            | 2001                   | 2009                  | 2000                                                                              | 2010                     | 2032<br>(planned)                         | 2025<br>(planned)  |
| Species                                                              | p↑+p↑<br>(polarized p) | p+p                   | p↑+Al, p↑+Au,<br>d+Au, h+Au, O+O,<br>Cu+Cu, Cu+Au,<br>Zr+Zr, Ru+Ru,<br>Au+Au, U+U | Pb+Pb,<br>p+Pb,<br>Xe+Xe | e↑+p↑ to e↑+U<br>(polarized e,p,<br>He-3) | p↑ d↑ A            |
| Circumference [km]                                                   | 3.8                    | 26.7                  | 3.8                                                                               | 26.7                     | 3.8                                       | 0.5                |
| Beam energy [GeV]                                                    | 255                    | 6500                  | 100 A                                                                             | 2560 A                   | 5-18 / 40-275                             | 1 – 4.5            |
| CoM energy [GeV]                                                     | 510                    | 13000                 | 200 A                                                                             | 5120 A                   | <b>28-140</b> (e↑+p↑)                     | 4 – 11             |
| Average beam current [mA]                                            | 257                    | 510                   | 224 (Au+Au)                                                                       | 24 (Pb+Pb)               | 2500 / 1000                               |                    |
| Peak luminosity [10 <sup>30</sup> cm <sup>-2</sup> s <sup>-1</sup> ] | 245                    | 2100                  | 0.015 (Au+Au)                                                                     | 0.006<br>(Pb+Pb)         | 10000 (e↑+p↑)                             |                    |
| Spin polarization                                                    | 55-60%                 | 0                     | 0                                                                                 | 0                        | 70% e,p,h                                 | 18                 |
|                                                                      |                        |                       |                                                                                   |                          | [PDG, Tables 32.4, 3                      | 2.5; EIC]          |

#### Luminosity evolution of hadron-hadron and lepton-hadron colliders





### LHC accelerator complex



► H (hydrogen anion) ► p (protons) ► ions Future Options RIBs (Radioactive Ion Beams) > n (neutrons) > p (antiprotons) > e (electrons)





2 new 300-metre service

HL-LHC



"CRAB" CAVITIES

III IIIII

**CRYSTAL COLLIMATORS** 

New crystal collimators in the

IR7 cleaning insertion to improve cleaning efficiency during

operation with ion beams.

16 superconducting "crab"

## **LHC Operations**

- Good availability through the first part of the year
- ~30 fb<sup>-1</sup> in ATLAS/CMS (Up to 1.4 fb<sup>-1</sup> in 24h)
- Achieved nominal rate (as 2023)
- Peak luminosity at ~2.1x10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>
  - >2 factor beyond design value
- Pile-up at ~65 in ATLAS/CMS

#### **Present focus**

- Long term productive, high availability operation
- Full mastery of considerable inherent operational risks
- Optimal performance to maximize physics output
- Adaptability, reactivity and engagement
- Studies, simulations, tool development to support effective exploitation of the LHC and to prepare for the HL-LHC program

National Laboratory







## High Luminosity LHC (HL-LHC)



#### **Relativistic Heavy Ion Collider at Brookhaven Natl Lab**

New sPHENIX detector in operation 2023-2025 (uses former BaBar magnet)







#### RHIC energies, species combinations and luminosities (Run-1 to 22)

lon programs require high flexibility in

- Species
- Energy

also in LHC ion program

To date did not have same species combination in RHIC and LHC (apart from p+p)

O+O likely also in LHC in the future

## **Electron-Ion Collider**

BNL-JLab partnership with national and international contribution sited at BNL - uses RHIC hadron complex CD-1 June 2021 (Conceptual Design complete, cost range), Early Science 2032 (planned)

#### Hadron storage Ring (RHIC Rings) 40-275 GeV (existing)

- o 1160 bunches, 1A beam current (3x RHIC)
- $\circ$  small vertical beam emittance 1.5 nm
- strong cooling (coherent electron cooling)

#### Electron storage ring 5–18 GeV (new)

- o many bunches, large beam current, 2.5 A → 9 MW S.R. power
- SC RF cavities
- Full energy swap-out injection of polarized bunches

#### Electron rapid cycling synchrotron 3–18 (new)

- o **1-2 Hz**
- Spin transparent due to high periodicity

#### High luminosity interaction region(s) (new)

- $\circ$  L = 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>
- Superconducting magnets
- $\,\circ\,$  25 mrad full crossing angle with crab cavities
- Spin rotators (longitudinal spin)
- Forward hadron instrumentation





## **NICA Accelerating Complex**

Multipurpose accelerating complex:

- NICA collider
- Injection complex
  - Two linacs
    - HILAC (A/Z >3)
    - LILAC (p, d)
  - Two SC synchrotrons
    - Booster and Nuclotron
    - Heavy ion stripping at Booster-to-Nuclotron transfers
    - Slow and fast extraction from Nuclotron



Collider construction gets to its final stage

- All SC magnets in arcs and their power supplies are installed
- SC solenoid of MPD is installed in its building and is getting to be ready for cryogenic tests and magnetic field measurements

Injection complex has been in commissioning for a few years and should be ready for collider injection in the 1<sup>st</sup> half of 2025



## **High-intensity machines**

### For secondary or tertiary particles



## High-intensity accelerators – Important considerations

- Beam Power
- Energy
  - used to increase power
  - used to maximize production cross section
- Energy efficiency (grid-to-beam)
- Beam loss / component activation
- Targets



Limited by beam dynamics

Limited by funding



[N. Abgrall et al., Phys. Rev. C 84, 034604 (2011)]



## Cyclotrons, Linacs, Rings

#### Cyclotrons

- Limited to ~600 MeV (extension: Fixed Field Alternating (FFA) gradients machines)
- Present power frontier: PSI cyclotron 1.4 MW
- Best energy efficiency

#### Linacs

- Space charge limit at source
- Present power frontier: ORNL SNS 1.7 MW (Jul 2024)
- Good energy efficiency with SRF and CW
- Accelerator rings
  - Highest energy reach
  - Space charge limit at injection
  - Present power frontier: J-PARC RCS 1.0 MW (Apr 2024)
  - Lower power efficiency

- Space charge limits (~ $1/\gamma^2$ )
- At source
- In rings at injection

PSI cyclotron 1.4 MW





Intensity upgrade of rings:

- raise injection energy into ring eg CERN Linac4, FNAL PIP-II
- reduce cycle time eg J-PARC Main Ring
- replace ring by linac





Brookhaven<sup>•</sup> National Laboratory [J. Wei, "Particle accelerator development: selected examples," Modern Physics Letters A, vol. 31, no. 10, pp. 1630010-1-13, Mar. 2016.]

## **High-intensity machines for HEP**

| Machine           | Energy<br>[GeV] | Beam<br>power<br>[MW] | Machine Type          | Comment        | Used for<br>[examples]              |
|-------------------|-----------------|-----------------------|-----------------------|----------------|-------------------------------------|
| PSI Cyclotron     | 0.590           | 1.4                   | Cyclotron, CW 51 MHz  | 1974 start     | mu3e                                |
| TRIUMF Cyclotron  | 0.520           | 0.2                   | Cyclotron, CW 23 MHz  | 1974 start     | PIENU                               |
| J-PARC MR         | 30              | 0.8                   | Ring, 2.48 sec, FX/SX | 2010 start     | Neutrinos FX, HEF SX                |
| with fast ramping | 30              | 1.3                   | Ring, 1.16 sec, FX/SX | 2028 (planned) | Neutrinos FX, HEFSX                 |
| FNAL Booster      | 8               | 0.08                  | Pulsed 15 Hz FX       | 1970 start     | Muon g-2, mu2e                      |
| FNAL MI           | 120             | 1.0                   | Pulsed FX/SX          | 1998 start     | Neutrinos                           |
| with PIP-II       | 120             | 1.2                   | Pulsed FX/SX          | 2030 (planned) | Neutrinos                           |
| CERN PS           | 24              | 0.03                  | Pulsed FX/SX          | 1959 start     | CLOUD                               |
| CERN SPS          | 450             | 0.5                   | Pulsed FX/SX          | 1976 start     | COMPASS, SHINE,<br>NA62/63/64 AWAKE |

FX = Fast eXtraction, SX = Slow eXtraction



## **PSI and TRIUMF Cyclotrons**



Paul Scherrer Institute (PSI), Cyclotron Particle: p, most energy efficient machine today E = 590 MeV, P = 1.4 MW Experiments: e.g. mu3e  $\mu^+ \rightarrow e^+e^+e^-$ 



TRIUMF, Cyclotron Particle: H<sup>-</sup>, multiple simultaneous extractions E = 520 MeV, P = 0.2 MW Experiments: e.g. PIENU  $\pi^+ \rightarrow e^+ \nu / \pi^+ \rightarrow \mu^+ \nu$ 

## J-PARC Main Ring beam power history



RCS has started 1 MW beam operation since April 2024.

In 2021 and 2022, MR had a long shutdown for hardware upgrade (magnet power supplies, RF systems, injection and FX systems, etc.) to shorten cycle times, 2.48 s  $\rightarrow$  1.36 s for FX, 5.20 s  $\rightarrow$  4.24 s for SX.



#### MAX. Beam Power:

FX: 810kW (2.3 x10<sup>14</sup> ppp), the world highest extracted ppp SX: 81 kW (7.2 x10<sup>13</sup> ppp) with the world highest extraction efficiency of 99.6 %  $_{33}$ 



### **J-PARC Future Plans**

(1) Power upgrade plan of MR-FX for the long-baseline neutrino oscillation experiments

|                    | Beam<br>Power | Cycle<br>Time | Number of<br>protons     | Equivalent<br>beam power at<br>RCS |
|--------------------|---------------|---------------|--------------------------|------------------------------------|
| Original<br>Design | 750 kW        | 1.36 s        | 2.1×10 <sup>14</sup> ppp | 640 kW                             |
| Goal for HK        | 1.3 MW        | 1.16 s        | 3.3×10 <sup>14</sup> ppp | 1 MW                               |

Further reinforcement of RF system and magnet power supplies Further reduction of beam loss using fine tuning of individual quadrupoles and sextupoles Installation of new beam dump with a larger capability

#### (2) Power upgrade of MR-SX > 100 kW

#### Beam loss reduction at ESS by diffusers







ESS: Electrostatic Septum SMS: Septum magnet for SX

#### Start of Hyper-Kamiokande 1400 : Plan 1200 Beam Power [kW] ○ : Achieved 1000 800 600 400 200 Ž016 2018 2020 2022 2024 2026 2028 2030 JFY

(3) MLF second target station



The RCS beam intensity will be increased to 1.5 MW: 1 MW (17 Hz) for TS1 and 0.5 MW (8 Hz) for TS2.

## Fermilab accelerator complex





### Fermilab Accelerator Complex in PIP-II / LBNF era

- New PIP-II SRF linac (to be completed in 2029) provides beam for injection into Booster at energy increased to 800 MeV from present 400 MeV
- Booster cycle rate is upgraded to 20 Hz from 15 Hz (doubling the proton flux)



- New LBNF beam line and target station for neutrino beam to DUNE
- Wide-reaching modernization campaign and series of upgrades will improve reliability
- With the present complex enables LBNF power of 1.2 MW
- Creates a platform for next-generation
   upgrades

## **CERN PS and SPS**

Extensive LHC Injector Upgrade (LIU) recently completed - increased Linac and Booster energy

- PS to East Area
  - CLOUD, IRRAD, CHARM
- SPS to North Area
  - COMPASS, SHINE, NA62/63/64
- AWAKE = Advanced Proton Driven Plasma Wakefield Acceleration Experiment
  - Plasma Wakefield acceleration with proton beam driver, bunch with 19 KJ
  - Rb vapor 10 m long plasma cell, accelerated 18 MeV electrons to ~800 MeV
- HiRadMat = High-Radiation to Materials
  - Protons: 440 GeV, max 3.46x10<sup>13</sup> p/pulse, max 2.4 MJ/pulse, 7.95  $\mu$ s pulse
  - Lead : 173.5 GeV/nucleon, max 3.64x10<sup>9</sup> ions/pulse, max 21 kJ/pulse, 5.2 μs pulse



## Summary – present accelerators and approved facilities

- Present colliders: 5x e<sup>+</sup>e<sup>-</sup> and 2x hh
  - Low-energy colliders are technology test beds (beam-beam compensation, crab crossing, beam cooling, collimation, ...)
  - SuperKEKB (very high L) prototype for future e<sup>+</sup>e<sup>-</sup> colliders, EIC
  - hh colliders increasing flexibility (energy, species)
- Colliders under construction:
  - BNL Electron-Ion Collider: ~100x HERA luminosity, polarized e,p,He-3 and heavy ions
  - NICA
- Present high-intensity machines
  - >1 MW beam power available, v beams drive increases
  - Synergies with other applications: spallation neutron sources, nuclear physics, Accelerator Driven Systems (ADS)
- Present high-intensity projects:
  - FNAL PIP-II goal: 1.2 MW
  - J-PARC MR goal: 1.3 MW

BNL EIC project – working towards baseline collisions 2032 (planned)





