# High energy QCD experimental physics





Vniver§itat ® València

# Josu Cantero on behalf of ATLAS/CMS/ALICE/LHCb collaborations IFIC (UV-CSIC) **ICHEP 2024** July 18-24, 2024



High energy QCD experimental physics





RYC2022-038164-I





- Proton-proton collisions quite involved phenomena.
  - Different QCD phenomenology entering in the description of the event.
  - It can be separated in terms of the energy scale:
    - Hard interaction ( $Q \sim \sqrt{\hat{s}}$ ).
    - Parton branching evolution ( $\sqrt{\hat{s}} > Q > \Lambda_{OCD}$ ).
    - Hadronisation ( $Q \sim \Lambda_{\rm QCD}$ ), Parton Distribution Functions (PDFs).



High energy QCD experimental physics



$$(\delta_{D/h_2}(x_2,\mu_F)\hat{\sigma}_{ab\to V+X}(\hat{s},\mu_R) + \mathcal{O}\left(\frac{\Lambda^p}{Q^p}\right)$$

QCD factorisation theorem: total process separated in two parts: short distance parton cross-section ( $\sigma_{ab \rightarrow V+X}$ ) and long-distance functions  $(f_{a/h_1}, f_{a/h_2})$ .

### • $\Lambda_{OCD}$ is the energy scale associated to hadronisation:

• O(100 MeV).



 $Q \sim \sqrt{\hat{s}}$ 

Hard interaction:

- Quark and gluons within protons interact to produce high energetic objects.
- Interactions between quark and gluons within the protons can be ignored at this stage.
- It can be described by perturbative QCD:

$$\hat{\sigma}_{ab} = \hat{\sigma}_{ab}^{(0)} + \frac{\alpha_S}{2\pi} \hat{\sigma}_{ab}^{(1)} + \left(\frac{\alpha_S}{2\pi}\right)^2 \hat{\sigma}_{ab}^{(2)} + \dots$$

$$\mathcal{O}(100\%) \qquad \mathcal{O}(20\%) \qquad \mathcal{O}(5\%)$$

LO NLO NNLO

• Perturbative expansion in terms of the strong coupling constant ( $\alpha_{\rm S}$ ) since it is small at high energies.

• Running of  $\alpha_{\rm S} \equiv \alpha_{\rm S}(Q)$ .



Original credit: Sherpa and Ben Nachman





 $\sqrt{\hat{s}} > Q > \Lambda_{QCD}$ 

Parton branching evolution:

- QCD shower of outgoing partons created in the hard interaction leading to jets of hadrons.
  - A multi scale process probing all-order structure of the perturbation theory.



Quark radiating gluons

 Resummation of different orders in pQCD needed for a fair description of the QCD shower.

• 
$$\alpha_{\rm S}^{\rm eff}(Q) \sim \alpha_{\rm S} \cdot \log(Q/\sqrt{\hat{s}}) \sim 1.$$

High energy QCD experimental physics



Original credit: Sherpa and Ben Nachman



 $Q \sim \Lambda_{OCD}$ 

Non-perturbative effects:

- hadrons (colorless particles).
- x =fraction of proton  $p_z$  taken by partons.





- QCD Lagrangian has 7 free parameters that need to be determined experimentally.
  - 6 quark masses which have EW origin: Higgs mechanism.
  - $\alpha_{\rm S}$  which is the only fundamental parameter of QCD: quite predictive theory!.
- Asymptotic freedom property: QCD interaction becomes weaker as the energy scale increases.
- $\alpha_{\rm S}$  is the SM coupling constant with the largest value.
- QCD corrections are quite important for several processes.
- It also affect vacuum stability due to the dependence of the Higgs quartic coupling ( $\lambda$ ) on  $\alpha_{\rm S}$  through the Renormalisation Group Equations (RGE).
  - Very important to extract  $\alpha_{\rm S}$  with high accuracy.
- Currently  $\alpha_{\rm S}$  is the less known SM coupling constant (w/o including Higgs sector).







Non-perturbative QCD: hadronisation

**QCD** resummation: jet substructure

Hard QCD physics



## Non-perturbative QCD

- Hadronisation plays an important role in the description of a jet.
  - Particles interact differently with the detector which affects jet calibration i.e  $\pi^0 \rightarrow \gamma \gamma$ .
  - ATLAS calorimeter: energy response smaller for baryons than  $\pi^0, \eta$ .



Constraining hadronisation models helps to reduce JES uncertainties and reduce uncertainties of non-perturbative corrections to calculations.

High energy QCD experimental physics



8

### Non-perturbative QCD



High energy QCD experimental physics



- Based on this observations, updated MC generator setups to define jet flavor response uncertainty.
  - Improvements on low/medium  $p_{\rm T}^{\rm jet}$  region.
- Updating single particle deconvolution uncertainty.
  - Improvements on high  $p_{\rm T}^{\rm jet}$  region.
- < 1% uncertainty on JES for  $p_{\rm T}^{\rm Jet} \gtrsim 70$  GeV.
- Uncertainty due to pile-up dominating at low  $p_{T}^{\text{jet}}$ .





9

# Non-perturbative QCD: jet fragmentation functions

z distributions of identified pions, kaons and protons separately



### Phys. Rev. D 108 (2023) L031103









- LHCb measurements of the double differential jet fragmentation functions for pions, kaons and protons.
- Discrepancies between Pythia MC including Lund hadronisation model and the measurements are observed:
  - Contribution from charged pions (kaons and protons) are largely underestimated (overestimated)
  - Further tuning on Lund model needed to improve the description.













Non-perturbative QC hadronisation

# QCD resummation: jet substructure

Hard QCD physics

|  | i. |
|--|----|
|  | ł. |







- Increase of  $\rho(k_{\rm T})$  towards low  $k_{\rm T}$  due to  $\alpha_{\rm S}$  running.



### Jet substructure: energy-energy correlations

- Energy-energy correlators sensitive to energy flow within the jet.
  - Simple theoretical properties: symmetry and factorisation properties.
  - EEC ratios sensitive to  $\alpha_{S}$ :  $\frac{\langle \mathcal{E}_{1}\mathcal{E}_{2}\mathcal{E}_{3}\rangle}{\langle \mathcal{E}_{1}\mathcal{E}_{2}\rangle} \sim \frac{\langle \mathbb{O}^{[4]}\rangle}{\langle \mathbb{O}^{[3]}\rangle} \sim \theta^{\gamma(4)-\gamma(3)}$

$$E2C = \frac{d\sigma^{[2]}}{dx_L} = \sum_{i,j}^n \int d\sigma \frac{E_i E_j}{E^2} \delta(x_L - \Delta R_{i,j})$$

$$x_L = \sqrt{(\Delta \eta_{i,j})^2 + (\Delta \phi_{i,j})^2}$$

$$F3C = \frac{d\sigma^{[3]}}{E_i E_j E_k} \delta(x_L - \max(\Delta R_L - \Delta R_L))$$

• Slope decreasing towards hight  $p_{\rm T}$  consistent with  $\alpha_{\rm S}$  running.  $\alpha_S(m_Z) = 0.1229^{+0.0014}_{-0.0012} \text{ (stat)}^{+0.0030}_{-0.0033} \text{ (theo)}^{+0.0023}_{-0.0036} \text{ (exp)}$ 

 $dx_L = \sum_{i \neq k} \int E^3 E^3$ 

 Uncertainty dominated by renormalisation scale (2.4%) and energy scale of jet constituents (2.3%).

High energy QCD experimental physics





CMS

### Jet substructure: energy-energy correlations

- EEC shows a clear distinction between pQCD and NP regions.





### High energy QCD experimental physics

Josu Cantero (UV-CSIC)









Non-perturbative QC hadronisation

QCD resummation: jet substructure

# Hard QCD physics

|  | i. |
|--|----|
|  | ł. |

# Hard QCD physics: 3-jet/2-jet ratios

- Measurements with hight- $p_{\rm T}$  jets allow to test pQCD and extract  $\alpha_{\rm S}$  and its running.
  - Typically lower uncertainties compared to low- $p_{\rm T}$  jets.
  - Useful for PDF(Q, x) fits; specially for high-*x* region.

3-jet/2-jet ratios:  $R_{\Delta\phi}$ 

$$\begin{split} R_{\Delta\phi}(p_{\mathrm{T}}) &= \frac{\sum_{i=1}^{N_{\mathrm{jet}}(p_{\mathrm{T}})} N_{\mathrm{nbr}}^{(i)}(\Delta\phi, p_{\mathrm{Tmin}}^{\mathrm{nbr}})}{N_{\mathrm{jet}}(p_{\mathrm{T}})} \\ p_{\mathrm{T}}^{\mathrm{jet}} &> 100 \; \mathrm{GeV}, \; |y^{\mathrm{jet}}| < 2.5 \\ \alpha_{\mathrm{S}}(m_{Z}) \; \mathrm{extraction \; at \; NLO:} \\ \alpha_{\mathrm{S}}(m_{Z}) &= 0.11177^{+0.0117}_{-0.0074} \\ \bullet \; \mathrm{Total \; uncertainty \; dominated} \end{split}$$

• Total uncertainty dominated by uncertainty on NLO calculations  $\approx 10\%$ .

400 500

1000

0.9F

0.8



### Josu Cantero (UV-CSIC)







High energy QCD experimental physics

amounts 2%!!!.



# Hard QCD physics: 3-jet/2-jet ratios

3-jet/2-jet ratios (
$$R_{3/2}$$
):

 $p_{\rm T}^{\rm jet} > 60 \text{ GeV}, |y^{\rm jet}| < 4.5$ 

$$\frac{d\sigma_{3j}/dx}{d\sigma_{2j}/dx}$$
, where  $x = H_{\text{T2}}$ ,  $m_{jj}$ 

- Measurements performed for different  $p_{T3}$  regions.

  - Comparisons with HEJ (including resummation of  $\log(p_{\rm T}^{\rm jet}/E_{\rm CM})$ ).
    - Important for VBF/VBS topologies.
- Good description by NNLO.









# Hard QCD physics: di-jet production

- Dijet cross-section measurements:
  - measurement









## Hard QCD physics: Z production

- - the subsequent recoil of the Z boson.  $q \sqrt{2}$

  - $\chi^2(\beta_{\rm exp},\beta_{\rm th}) =$









### Conclusions

- QCD has a quite rich phenomenology.
- Huge work on reducing systematics uncertainties and improving theory calculations.
  - They allow to perform thorough tests of QCD in a wide range of energy scales.
- Other interesting results not covered in this talk:
  - Z + HF jets (ATLAS): arXiv:2403.15093
  - Lund multiplicites (ATLAS): arXiv:2402.13052
  - Inclusive jets at (CMS): arXiv:2401.11355
  - Jet fragmentation functions (ALICE): arXiv:2311.13322
  - ► W + c (CMS): arXiv:2308.02285
  - Z + jets (CMS): arXiv:2205.02872
  - Dead-cone effect (ALICE): Nature 605 (2022) 440
  - Inclusive jets and NNLO  $\alpha_{\rm S}$  (ZEUS): arXiv:2309.02889
  - Groomed event-shapes (H1): arXiv:2403.10134

# ATLAS and CMS multijet production event displays!





# Backup

High energy QCD experimental physics



### Hard QCD physics: Z production

- $p_T^Z$  in inclusive Z production events sensitive to  $\alpha_S$ .
  - Strong forces responsible for the ISR radiation and the subsequent recoil of the Z boson.
  - Low-momentum Sudakov region.
  - $N^{3}LO + N^{4}LLa$  accuracy for predictions.  $\chi^2(\beta_{\rm exp},\beta_{\rm th}) =$















- Proton-proton collisions quite involved phenomena.
  - Different aspect of QCD entering in the description of the event.
  - Different QCD effects can be factorized in terms of the energy scale:



### Not covered in this talk:







# Hard QCD physics: inclusive jets an di-jets

• New inclusive jet and dijet cross-sections by ZEUS to extract  $\alpha_{\rm S}$  in a PDF+ $\alpha_{\rm S}$  fit at NNLO.

arXiv:2309.02889

NNLO:  $\alpha_s(M_Z^2) = 0.1142 \pm 0.0017 \text{ (exp./fit)} + 0.0006 \text{ (model/param.)} + 0.0006 \text{ (scale)},$ NLO:  $\alpha_s(M_Z^2) = 0.1159 \pm 0.0017 \text{ (exp./fit)} + 0.0007 \text{ (model/param.)} + 0.0012 \text{ (scale)}.$ 



High energy QCD experimental physics

ZEUS  $(GeV^2)$  150 - 200 200 - 270 270 - 400 400 - 700 700 - 5000 5000 - 15000 Jet-energy scale **Background contribution** 

MC model **Electron uncertainties** Quality-cut variations

Other corrections **QED-radiation correction** Unfolding uncertainty

Factor 2 reduction on theory uncertainty from NLO to NNLO (1% to 0.5%).

 $\alpha_{\rm S}$  running tested for 18 < Q/GeV < 84







### Non-perturbative QCD: jet fragmentation functions

### arXiv:2311.13322



### High energy QCD experimental physics

- Charged particle information important for GPF algorithms.
  - Match energy cluster with tracks.



27

### Jet substructure: Lund jet plane





### Jet substructure: Lund jet plane



High energy QCD experimental physics

![](_page_28_Picture_3.jpeg)

### Phys. Rev. Lett 124 (2020) 02

![](_page_28_Figure_5.jpeg)

![](_page_28_Figure_7.jpeg)

![](_page_28_Picture_8.jpeg)

# Jet substructure: Lund multiplicities

• Lund multiplicities built from the LJP.

![](_page_29_Figure_2.jpeg)

accuracies.

Angular ordered Herwig showers give overall best description of the measurements.

- Measurements also compared to NLO+NNDL+NP.
  - Large uncertainty still due to NP corrections: estimated by comparing different models.
  - Observable also sensitive to  $\alpha_{\rm S}$  QCD-running.

High energy QCD experimental physics

![](_page_29_Picture_9.jpeg)

### Counts the number of emissions above a specified transverse momentum requirement.

• Measurements compared with MC models including different hadronisation tunes, PS algorithms, ME

![](_page_29_Picture_17.jpeg)

![](_page_29_Picture_18.jpeg)

# Hard QCD physics: V+jets

- V+jets production good properties to test pQCD:

![](_page_30_Figure_7.jpeg)

### High energy QCD experimental physics

![](_page_30_Picture_10.jpeg)

![](_page_30_Picture_11.jpeg)

## Hard QCD physics: V+jets

NLO

NNLO

NNLO

![](_page_31_Figure_1.jpeg)

CMS:  $163.4 \pm 0.5$  (stat)  $\pm 6.2$  (syst) pb

4.1

8.2

8.0

178.3

174.7

171.1

182.4

182.9

179.1

LO

LO

NLO

High energy QCD experimental physics

| $\Delta_{ m stat}^{ m OS-SS}$ | $\Delta_{ m scales}^{ m OS-SS}$ | $\Delta_{\mathrm{PDF}}^{\mathrm{OS-SS}}$ | $\Delta_{	ext{Total}}^{	ext{OS-SS}}$ |
|-------------------------------|---------------------------------|------------------------------------------|--------------------------------------|
| $\pm 0.1$                     | +16.6<br>-13.3                  | $\pm 5.1$                                | $+17.4 \\ -14.3$                     |
| $\pm 0.3$                     | +9.3<br>-9.4                    | $\pm 6.8$                                | +11.6<br>-11.6                       |
| $\pm 1.0$                     | +1.2<br>-2.8                    | $\pm 6.8$                                | +7.0<br>-7.4                         |
| $\pm 1.0$                     | $+\overline{1.2} \\ -2.8$       | $\pm 6.8$                                | +7.0<br>-7.4                         |

![](_page_31_Picture_10.jpeg)

32

### Hard QCD physics: inclusive jets

![](_page_32_Figure_1.jpeg)

High energy QCD experimental physics

![](_page_32_Picture_3.jpeg)

![](_page_32_Picture_6.jpeg)

![](_page_33_Figure_1.jpeg)

High energy QCD experimental physics

![](_page_33_Picture_8.jpeg)

# Hard QCD physics: di-jet production

![](_page_34_Figure_5.jpeg)

High energy QCD experimental physics

![](_page_34_Figure_8.jpeg)

![](_page_34_Picture_9.jpeg)

# Hard QCD physics: di-jet production

- 10% underestimation by NNLO for small  $y^*$  and  $y_b$ .
  - ▶ 20% for large  $y_h$  and small  $y^*$ .
- PDF determination by performing PDF +  $\alpha_{\rm S}$  fits:
  - Inclusion of dijet measurements leads to an improved determination of the PDFs.

![](_page_35_Figure_5.jpeg)

High energy QCD experimental physics

### $\alpha_{\rm S}(m_{\rm Z}) = 0.1179 \pm 0.0019$

 $\sim$  1% coming from NNLO uncertainty!

![](_page_35_Picture_12.jpeg)

![](_page_35_Picture_13.jpeg)

# Hard QCD physics: inclusive jets production

- Inclusive jet cross section measurements:
  - Test QCD dynamics.
  - Sensitive to gluon PDF and  $\alpha_s$ .
- Measurements compared to NLO and NNLO calculations.
  - Two scales compared at NLO:  $p_{\rm T}$  and  $H_{\rm T}$ .
- Sensitivity to  $\alpha_{\rm S}$  was studied.
  - Preference for  $\alpha_{\rm S} \sim 0.118$ .

![](_page_36_Figure_8.jpeg)

![](_page_36_Figure_9.jpeg)

### High energy QCD experimental physics

$$p_{\rm T}^{\rm jet}$$
 > 60 GeV,  $|y^{\rm jet}|$  < 2.0

![](_page_36_Figure_13.jpeg)

![](_page_36_Figure_14.jpeg)

![](_page_36_Picture_17.jpeg)

37