High energy QCD experimental physics

ICHEP 2024 IFIC (UV-CSIC) July 18-24, 2024 Josu Cantero on behalf of ATLAS/CMS/ALICE/LHCb collaborations

RYC2022-038164-I

High energy QCD experimental physics

Introduction

- ‣ Proton-proton collisions quite involved phenomena.
	- ‣ Different QCD phenomenology entering in the description of the event.
	- It can be separated in terms of the energy scale:
		- ► Hard interaction $(Q \sim \sqrt{\hat{s}})$. ̂
		- **•** Parton branching evolution ($\sqrt{\hat{s}} > Q > \Lambda_{QCD}$).
		- ► Hadronisation ($Q \sim \Lambda_{\rm QCD}$), Parton Distribution Functions (PDFs).

High energy QCD experimental physics

$$
\delta_{dh_2}(x_2,\mu_F)\hat{\sigma}_{ab\to V+X}(\hat{s},\mu_R)+\mathcal{O}\left(\frac{\Lambda^p}{Q^p}\right)
$$

‣ *QCD factorisation theorem*: total process separated in two parts: short distance parton cross-section $(\sigma_{ab\rightarrow V+X})$ and long-distance functions $(f_{a/h_1}, f_{a/h_2})$.

► Λ_{QCD} is the energy scale associated to hadronisation:

• $O(100 \text{ MeV}).$

Introduction

Q ∼ *s*

Original credit: Sherpa and Ben Nachman

Hard interaction:

- Quark and gluons within protons interact to produce high energetic objects.
- Interactions between quark and gluons within the protons can be ignored at this stage.
- It can be described by perturbative QCD:

$$
\hat{\sigma}_{ab} = \hat{\sigma}_{ab}^{(0)} + \frac{\alpha_S}{2\pi} \hat{\sigma}_{ab}^{(1)} + \left(\frac{\alpha_S}{2\pi}\right)^2 \hat{\sigma}_{ab}^{(2)} + \dots
$$

$$
\hat{\sigma}(100\%) \qquad \hat{\sigma}(20\%) \qquad \hat{\sigma}(5\%)
$$

LO **NLO NNLO**

• Perturbative expansion in terms of the strong coupling $constant (\alpha_S)$ since it is small at high energies.

• Running of $\alpha_{\rm S} \equiv \alpha_{\rm S}(Q)$.

4

High energy QCD experimental physics

Original credit: Sherpa and Ben Nachman

Introduction

s ̂> *Q* > Λ*QCD*

Parton branching evolution:

- QCD shower of outgoing partons created in the hard interaction leading to jets of hadrons.
	- A multi scale process probing all-order structure of the perturbation theory.

Quark radiating gluons

• Resummation of different orders in pQCD needed for a fair description of the QCD shower.

$$
\sim \alpha_{\rm S}^{\rm eff}(Q) \sim \alpha_{\rm S} \cdot \log(Q/\sqrt{\hat{s}}) \sim 1.
$$

Introduction

Q ∼ Λ*QCD*

Non-perturbative effects:

- hadrons (colorless particles).
-
- -
-
-

Introduction

- ‣ QCD Lagrangian has 7 free parameters that need to be determined experimentally.
	- 6 quark masses which have EW origin: Higgs mechanism.
	- \bullet $\alpha_{\rm S}$ which is the only fundamental parameter of QCD: quite predictive theory!.
- ‣ Asymptotic freedom property: QCD interaction becomes weaker as the energy scale increases.
- $\sim \alpha_{\rm S}$ is the SM coupling constant with the largest value.
- QCD corrections are quite important for several processes.
- It also affect vacuum stability due to the dependence of the Higgs quartic coupling (λ) on $\alpha_{\rm S}$ through the Renormalisation Group Equations (RGE).
	- Very important to extract $\alpha_{\rm S}$ with high accuracy.
- Currently α_{S} is the less known SM coupling constant (w/o including Higgs sector).

Non-perturbative QCD: hadronisation

QCD resummation: jet substructure

Hard QCD physics

Non-perturbative QCD

- Hadronisation plays an important role in the description of a jet.
	-
	- ATLAS calorimeter: energy response smaller for baryons than π^0,η .

► Particles interact differently with the detector which affects jet calibration i.e $\pi^0 \to \gamma \gamma$.

‣ Constraining hadronisation models helps to reduce JES uncertainties and reduce uncertainties of non-perturbative corrections to calculations.

Non-perturbative QCD

- ‣ Based on this observations, updated MC generator setups to define jet flavor response uncertainty.
- Improvements on low/medium p_T^{jet} region. T
- ‣ Updating single particle deconvolution uncertainty.
- Improvements on high $p_{\rm T}^{\rm jet}$ region. T
- ▶ < 1% uncertainty on JES for $p_{\rm T}^{\rm jet}$ \gtrsim 70 GeV. $T \frac{Jct}{\sim}$
- 2×10^{5} \rightarrow Uncertainty due to pile-up
 $p_{\rm T}^{\rm jet}$ [GeV] dominating at low $p_{\rm T}^{\rm jet}$. dominating at low p_T^{jet} . T

Non-perturbative QCD: jet fragmentation functions

High energy QCD experimental physics

z distributions of identified pions, kaons and protons separately

- ‣ LHCb measurements of the double differential jet fragmentation functions for pions, kaons and protons.
- Discrepancies between Pythia MC including Lund hadronisation model and the measurements are observed:
	- Contribution from charged pions (kaons and protons) are largely underestimated (overestimated)
	- Further tuning on Lund model needed to improve the description.

Phys. Rev. D 108 (2023) [L031103](https://journals.aps.org/prd/pdf/10.1103/PhysRevD.108.L031103)

Non-perturbative QC hadronisation

QCD resummation: jet substructure

Hard QCD physics

-
-
-

- -
-

High energy QCD experimental physics Josu Cantero (UV-CSIC)

- -
	-
- Increase of $\rho(k_{\rm T})$ towards low $k_{\rm T}$ due to $\alpha_{\rm S}$ running.

High energy QCD experimental physics **Fig. 3** Josu Cantero (UV-CSIC)

- Energy-energy correlators sensitive to energy flow within the jet.
- ‣ Simple theoretical properties: symmetry and factorisation properties.
	- \triangleright EEC ratios sensitive to $\alpha_{\rm S}$:

Jet substructure: energy-energy correlations

- $\alpha_S(m_Z) = 0.1229^{+0.0014}_{-0.0012}$ (stat)^{$+0.0030$} (theo)^{$+0.0023$} (exp) • Slope decreasing towards hight p_T consistent with α_S running.
- Uncertainty dominated by renormalisation scale (2.4%) and energy scale of jet constituents (2.3%).

High energy QCD experimental physics Josu Cantero (UV-CSIC)

$$
E2C = \frac{d\sigma^{[2]}}{dx_L} = \sum_{i,j}^{n} \int d\sigma \frac{\sum_{i}^{E_i E_j}}{\sum_{i}^{E_i} \sum_{i}^{E_i}} \delta(x_L - \Delta R_{i,j})
$$

$$
x_L = \sqrt{(\Delta \eta_{i,j})^2 + (\Delta \phi_{i,j})^2}
$$

$$
E3C = \frac{d\sigma^{[3]}}{dx_L} = \sum_{i}^{n} \int d\sigma \frac{\sum_{i}^{E_i E_j E_k}}{\sum_{i}^{E_i E_j E_k}} \delta(x_L - \max(\Delta R_{i,j}, \Delta R_{i,k}, \Delta R_{j,k}))
$$

Jet substructure: energy-energy correlations

- ‣ EEC shows a clear distinction between pQCD and NP regions.
-

virtuality $\sim p_{\rm T} R_{\rm L}$ $\tau \simeq 1/(p_{\rm T} R_{\rm L}^2)$

High energy QCD experimental physics **Fig. 10 Josu Cantero (UV-CSIC)**

Non-perturbative QC hadronisation

QCD resummation: jet substructure

Hard QCD physics

17

Hard QCD physics: 3-jet/2-jet ratios

- Measurements with hight- $p_{\rm T}$ jets allow to test pQCD and extract $\alpha_{\mathcal{S}}$ and its running.
	- \blacktriangleright Typically lower uncertainties compared to low- p_T jets.
	- \triangleright Useful for PDF(Q, x) fits; specially for high-x region.

3-jet/2-jet ratios: $R_{\Delta\phi}$

 by uncertainty on NLO calculations \approx 10%.

400 500

0.9는

 0.8

$R_{\Delta\phi}(p_T) = \frac{\sum_{i=1}^{N_{jet}(p_T)} N_{nbr}^{(i)}(\Delta\phi, p_{Tmin}^{nbr})}{N_{jet}(p_T)}$	$\frac{\Delta^2}{\alpha^2} 0.35$	$\cos \theta$	$\arXiv:240$
$p_T^{jet} > 100 \text{ GeV}, \quad y^{jet} < 2.5$	0.25		
$\alpha_S(m_Z)$ extraction at NLO:	0.15	σ Data	
$\alpha_S(m_Z) = 0.1177 + 0.0117$	0.15	σ Total uncertainty	
$\alpha_S(m_Z) = 0.1177 + 0.0117$	0.05	σ B scale uncertainties	
$\alpha_S(m_Z) = 0.1177 + 0.0117$	0.05	σ PDF uncertainties	
$\alpha_S(m_Z) = 0.1177 + 0.0117$	0.05	σ PDF uncertainties	

1000

High energy QCD experimental physics Josu Cantero (UV-CSIC)

-
-
-

amounts 2%!!!.

Hard QCD physics: 3-jet/2-jet ratios

3-jet/2-jet ratios
$$
(R_{3/2})
$$
:

$$
\frac{d\sigma_{3j}/dx}{d\sigma_{2j}/dx}
$$
, where $x = H_{T2}$, m_{jj}

High energy QCD experimental physics **State Search Contract (UV-CSIC)**

- -
	- ‣ Comparisons with HEJ (including resummation
		- Important for VBF/VBS topologies.
- Good description by NNLO.
	-

Hard QCD physics: di-jet production

- Dijet cross-section measurements:
	- measurement
		-
	-

High energy QCD experimental physics

Hard QCD physics: Z production

- - the subsequent recoil of the Z boson.
	-
	- $\chi^2(\beta_{\exp},\beta_{\text{th}})$ =

High energy QCD experimental physics Josu Cantero (UV-CSIC)

Conclusions

- QCD has a quite rich phenomenology.
- Huge work on reducing systematics uncertainties and improving theory calculations.
	- ‣ They allow to perform thorough tests of QCD in a wide range of energy scales.
- Other interesting results not covered in this talk:
	- ‣ Z + HF jets (ATLAS): [arXiv:2403.15093](https://arxiv.org/abs/2403.15093)
	- ‣ Lund multiplicites (ATLAS): [arXiv:2402.13052](https://arxiv.org/abs/2402.13052)
	- ‣ Inclusive jets at (CMS): [arXiv:2401.11355](https://arxiv.org/abs/2401.11355)
	- ‣ Jet fragmentation functions (ALICE): [arXiv:2311.13322](https://arxiv.org/abs/2311.13322)
	- ‣ W + c (CMS): [arXiv:2308.02285](https://arxiv.org/abs/2308.02285)
	- ‣ Z + jets (CMS): [arXiv:2205.02872](https://arxiv.org/abs/2205.02872)
	- ‣ Dead-cone effect (ALICE): [Nature 605 \(2022\) 440](https://www.nature.com/articles/s41586-022-04572-w)
	- **•** Inclusive jets and NNLO $\alpha_{\rm S}$ (ZEUS): [arXiv:2309.02889](https://arxiv.org/pdf/2309.02889)
	- ‣ Groomed event-shapes (H1): [arXiv:2403.10134](https://arxiv.org/pdf/2403.10134)

ATLAS and CMS multijet production event displays!

High energy QCD experimental physics Josu Cantero **23**

Backup

Hard QCD physics: Z production

- $\sim p_\text{T}^Z$ in inclusive Z production events sensitive to $\alpha_{\rm S}$. $\frac{\mathcal{L}}{\mathrm{T}}$ in inclusive Z production events sensitive to α_{S}
	- ‣ Strong forces responsible for the ISR radiation and the subsequent recoil of the Z boson.
	- ‣ Low-momentum Sudakov region.
	- $\sim N^3LO + N^4LL$ a accuracy for predictions. $\chi^2(\beta_{\exp}, \beta_{\text{th}}) =$

High energy QCD experimental physics Josu Cantero (UV-CSIC)

Introduction

- ‣ Proton-proton collisions quite involved phenomena.
	- ‣ Different aspect of QCD entering in the description of the event.
	- Different QCD effects can be factorized in terms of the energy scale:

Not covered in this talk:

-
-
-
-

Hard QCD physics: inclusive jets an di-jets

High energy QCD experimental physics Josu Cantero

ZEUS $\frac{1}{100}(1.60 \times 10^{-19} \text{ m})^{150} - 200 - 200 - 270 = 270 - 400 - 400 - 700 - 700 - 700 - 5000 - 5000 - 15000$ Jet-energy scale Background contribution

MC model Electron uncertainties Quality-cut variations

Other corrections **QED-radiation correction Unfolding uncertainty**

 \blacktriangleright New inclusive jet and dijet cross-sections by ZEUS to extract α_{S} in a PDF+ α_{S} fit at NNLO.

> ‣ Factor 2 reduction on theory uncertainty from NLO to NNLO (1% to 0.5%).

 α_s running tested for $18 < Q/\text{GeV} < 84$

[arXiv:2309.02889](https://arxiv.org/pdf/2309.02889)

NNLO: $\alpha_s(M_Z^2) = 0.1142 \pm 0.0017$ (exp./fit) $_{-0.0007}^{+0.0006}$ (model/param.) $_{-0.0004}^{+0.0006}$ (scale), NLO: $\alpha_s(M_Z^2) = 0.1159 \pm 0.0017$ (exp./fit) $_{-0.0009}^{+0.0007}$ (model/param.) $_{-0.0009}^{+0.0012}$ (scale).

27

Non-perturbative QCD: jet fragmentation functions

- Charged particle information important for GPF algorithms.
	- ‣ Match energy cluster with tracks.

[arXiv:2311.13322](https://arxiv.org/abs/2311.13322)

High energy QCD experimental physics **State Lange Cantero**

Jet substructure: Lund jet plane

High energy QCD experimental physics **Act August Cantero**

Jet substructure: Lund jet plane

High energy QCD experimental physics **State Seart Union**

Phys. Rev. Lett 124 [\(2020\)](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.222002) 02

Jet substructure: Lund multiplicities

High energy QCD experimental physics Josu Cantero

• Lund multiplicities built from the LJP.

‣ Counts the number of emissions above a specified transverse momentum requirement.

- Measurements also compared to NLO+NNDL+NP.
	- Large uncertainty still due to NP corrections: estimated by comparing different models.
	- \triangleright Observable also sensitive to $\alpha_{\rm S}$ QCD-running.

• Measurements compared with MC models including different hadronisation tunes, PS algorithms, ME

accuracies.

‣ Angular ordered Herwig showers give overall best description of the measurements.

High energy QCD experimental physics Josu Cantero

Hard QCD physics: V+jets

- V+jets production good properties to test pQCD:
	-
	-
	- -
	-

Hard QCD physics: V+jets

High energy QCD experimental physics Josu Cantero

CMS: 163.4 ± 0.5 (stat) ± 6.2 (syst) pb

High energy QCD experimental physics Josu Cantero **33**

Hard QCD physics: inclusive jets

High energy QCD experimental physics **State Seart Seart University Cantero**

-
- -

Hard QCD physics: di-jet production

- - -
	-

High energy QCD experimental physics Josu Cantero

36

Hard QCD physics: di-jet production

- 10% underestimation by NNLO for small y^* and y_b .
	- \blacktriangleright 20% for large y_b and small y^* .
- PDF determination by performing $PDF + \alpha_{S}$ fits:
	- ‣ Inclusion of dijet measurements leads to an improved determination of the PDFs.

High energy QCD experimental physics **High enterom Automobile Cantero**

$\alpha_s(m_Z) = 0.1179 \pm 0.0019$

 $\sim \approx$ 1% coming from NNLO uncertainty!

37

Hard QCD physics: inclusive jets production

- Inclusive jet cross section measurements:
	- ‣ Test QCD dynamics.
	- \triangleright Sensitive to gluon PDF and $\alpha_{\rm S}$.
- Measurements compared to NLO and NNLO calculations.
	- \blacktriangleright Two scales compared at NLO: $p_{\rm T}$ and $H_{\rm T}$.
- Sensitivity to $\alpha_{\rm S}$ was studied.
	- ► Preference for $\alpha_{\rm S} \sim 0.118$.

$$
p_T^{\text{jet}} > 60 \text{ GeV}, |y^{\text{jet}}| < 2.0
$$

High energy QCD experimental physics