

Advances in (experimental) hadron physics

Xiao-Rui Lyu

(*xiaorui@ucas.ac.cn*) University of Chinese Academy Sciences

Xiao-Rui LYU

Outline

- Introduction
- Light hadron spectroscopy
- Heavy hadron spectroscopy
 - ✓ Heavy meson
 - ✓ Heavy baryon
- Summary

See more results in below contributions by

- Lorenzo Capriotti
- Xin Chen
- Francesca De Mori
- Yuping Guo
- Beijiang Liu
- Roman Mizuk
- Alexis Pompili
- Raul Rabadan
- Zan Ren
- Miroslav Saur

I apologize for not covering all the experiments results.

Xiao-Rui LYU

Introduction

• Quarks and gluons not isolated in nature.

- Formation of colorless bound states: "Hadrons"
- 1-fm scale size of hadrons?
- Hadron spectroscopy provides opportunities to study QCD in the nonperturbative region
 - Extensive and precise spectroscopy combined with a thorough theoretical analysis, will add substantially to our knowledge of QCD
- Complex exotic hadrons can reveal new or hidden aspects of the dynamics of strong interactions
 - Predicted in quark model
 - Recent results show strong evidence for their existence

1/Q GeV-1

Xiao-Rui LYU

Different types of hadrons to be explored

Baryons are red-bluegreen triplets

Mesons are coloranticolor pairs

π=ūd

∧=usd

Other possible combinations of quarks and gluons : *exotic states*!!!

Xiao-Rui LYU

Main contributors worldwide

• e^+e^- collider

• Hadron collider

Fixed-target experiments
 Gradient experiments

Xiao-Rui LYU

ICHEP2024, Prague

Discoveries of many new hadrons

more than 20 new hadrons since the ICHEP2022

Xiao-Rui LYU

Light hadrons

Light hadron spectroscopy

BESIII, LHCb, Belle (II) ...

Xiao-Rui LYU

ICHEP2024, Prague

A glueball-like state X(2370)

X(2370) firstly seen in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$

- Partial wave analysis $J/\psi \rightarrow \gamma K_S K_S \eta'$ in 10B J/ψ decays
- $X(2370) \rightarrow K_S K_S \eta'$ significance larger than 14 σ
- mass $2395 \pm 11^{+26}_{-94} \text{ MeV}/c^2$
- width $188^{+18}_{-17}^{+124}_{-33}$ MeV
- spin-parity is determined to be 0^{-+}
- candidate for lightest pseudoscalar glueball predicted by LQCD

Xiao-Rui LYU

B€SⅢ

EXAMPLE 5 Observation of new decay modes of X(2370)

• More J/ψ radiative decays to X(2370) are investigated

- X(2370) observed in the gluon-rich J/ ψ radiative decays
 - J^{PC} determined to be 0⁻⁺
 - Mass and production rate consistent with LQCD
 - Decay modes X(2370) →

η'ππ, η'KK, $K_S^0 K_S^0$ η, $K_S^0 K_S^0 \pi^0$, ηπ⁰π⁰, a_0^0 (980)π⁰ observed, in analog to η_c

Consistent with 0⁻⁺ glueball

Xiao-Rui LYU

PWA of $J/\psi \rightarrow \gamma \eta \eta'$ in 10B J/ψ events

Must be exotic state! Hybrid? Molecule? Tetraquark?

Observation of $a_0(1817)^+$ in $D_s^+ \rightarrow K_S K^+ \pi^0$

PRL129, 182001 (2022)

A new a_0 isospin triplet!

- Clear enhancement is seen near the $\Lambda\bar{\Lambda}$ mass threshold combining 31 datasets
- Simultaneous 1D fit to the ΛΛ̄ mass spectra assuming a 1⁻⁻ state: mass: 2536 ± 7 ± 15 MeV/c² width: 304 ± 28 ± 54 MeV

hexaquark? baryonium?

Xiao-Rui LYU

EXAMPLE 5 Rediscovery of Y(2175)/ ϕ (2170)

- A strangeonium(-like) state: *Y*-particle with strange quark
- > Theorists explain φ(2170) as
 - ✓ ssg hybrid
 - $\checkmark 2^3D_1 \text{ or } 3^3S_1 s\bar{s}$
 - ✓ tetraquark
 - \checkmark Molecular state $\Lambda\overline{\Lambda}$
 - $\checkmark \phi f_0(980)$ resonance with FSI
 - ✓ Three body system **\epsilon KK**

R < 0.2: much less than 1?

Xiao-Rui LYU

$X(p\overline{p})/X(18??)$ from J/ψ radiative decays

Xiao-Rui LYU

B€SⅢ

ICHEP2024, Prague

Xiao-Rui LYU

ICHEP2024, Prague

Hyperons from charmed baryon decays

Xiao-Rui LYU

ICHEP2024, Prague

Heavy mesons

Overpopulated charmonium spectrum

Overpopulated observed new charmonium-like states, i.e. "XYZ":

- Most of them are close to the mass thresholds of charmed meson pairs
- Some are not accommodated as conventional meson
 ==> candidate of exotic hadron states
- More efforts are needed to pin down their nature

Strong indication of a sizeable charmonium or tetraquark compact component of the $\chi_{c1}(3872)!$

Xiao-Rui LYU

RF7: 2021 Update on Hadron Spectroscopy

Xiao-Rui LYU

ICHEP2024, Prague

Observations of three heavy Y(4500), Y(4710) and Y(4790) states

B€SⅢ

EXAMPLE 5 Cross sections of charmed hadron pairs

Rich ψ/Y resonances in the final states of the charmed hadron pairs.

Xiao-Rui LYU

ICHEP2024, Prague

BESIII negates the Y(4630) reported by Belle

Amplitude analysis of $B^+ \rightarrow D_s^+ D_s^- K^+$ based on LHCb RUN1+2 data

- Near threshold structure X(3960): 12σ , $J^{PC} = 0^{++}$
- $X_0(4140)$ accounts for the dip around 4.14 GeV

ICHEP2024, Prague

PRD 108, 034012 (2023) PRL131, 071901 (2023)

Three new charmonium(-like) states

in $B^+ \rightarrow D^{*\pm} D^{\mp} K^+$ decays

Simultaneous fit to B⁺ → D^{*+} D⁻K⁺ and D^{*-} D⁺K⁺ to relate the C-parities of the charmonium(-like) states R → D^{*+}D⁻ and R → D^{*-}D⁺:

Zcs [ccus] states

~235

>5.3 *\sigma*

- Charged Zcs states are observed at BESIII and LHCb: $Z_{cs}(3985), Z_{cs}(4000), Z_{cs}(4220)$
- It is natural to search for the neutral isospin partners

All $Z_{cs}(1^+)$				$25 \pm 5^{+11}_{-12}$
$Z_{cs}(4000)$	15(16)	$4003 \pm 6 {}^{+}_{-14}{}^{4}$	$131\pm15\pm26$	$9.4 \pm 2.1 \pm 3.4$
$Z_{cs}(4220)$	5.9(8.4)	$4216 \pm 24 {}^{+43}_{-30}$	$233 \pm 52 {}^{+97}_{-73}$	$10 \pm 4^{+10}_{-7}$

	Mass (MeV/c^2)	Width (MeV)
$Z_{cs}(3985)^0$	$3992.2 \pm 1.7 \pm 1.6$	$7.7^{+4.1}_{-3.8} \pm 4.3$
$Z_{cs}(3985)^+$	$3985.2^{+2.1}_{-2.0} \pm 1.7$	$13.8^{+8.1}_{-5.2} \pm 4.9$

√*s* = 4.681 GeV

ICHEP2024, Prague

Xiao-Rui LYU

- Simultaneous fits to $B^0 \rightarrow J/\psi \phi K_S$ and $B^+ \rightarrow J/\psi \phi K^+$, assuming isospin symmetry for all the intermediate states, except for the charged and neutral $T_{c\bar{c}\bar{s}1}(4000)$ states.
- Consistent with being isospin partners: $\Delta m = -12^{+11+6}_{-10-4} \text{ MeV}/c^2$
- Significance is. 4.0σ without isospin symmetry for $T_{c\bar{c}\bar{s}1}(4000)^0$, while 5.4σ with isospin symmetry constrains

	J ^P	Mass (MeV/ c^2)	Width (MeV)	Fit fraction
$T_{c\bar{c}\bar{s}1}(4000)^0 \to J/\psi K^0_S$	1+	3991^{+12+9}_{-10-17}	105^{+29+17}_{-25-23}	$7.9 \pm 2.5^{+3.0}_{-2.8}$
$Z^+_{\rm cs}/T_{c\bar{c}\bar{s}1}(4000)^+\to J/\psi K^+$	1+	$4003 \pm 6^{+4}_{-14}$	$131 \pm 15 \pm 26$	$9.4 \pm 2.1 \pm 3.4$

Xiao-Rui LYU

New Z_{cs}^0 [$c\bar{c}d\bar{s}$] exotics

7D amplitude analysis of ~30k signals of $B^+ \rightarrow$ $\psi(2S)K^+\pi^+\pi^-$

- The data cannot be described by conventional strange and charmonium resonances only
- An amplitude model with 53 components is developed comprising 6 known $K^* \rightarrow K^+ \pi^+ \pi^$ states, 5 known neutral charmonium(-like) hadrons, 4 known charged exotic hadrons and 3 new exotic states $T_{c\bar{c}\bar{s}1} \rightarrow \psi(2S)K^+\pi^-$

Resonance	J^P	$m_0 [{ m MeV}]$	$\Gamma_0 [MeV]$	Sign. $[\sigma]$
$\chi_{c0}(4475)$	0+	$4475{\pm}~7~{\pm}12$	$_{231\pm19\pm32}$	> 20 (19)
$\chi_{c1}(4650)$	1+	$4653 {\pm} 14 {\pm} 27$	$227{\pm}26{\pm}22$	15 (13)
$\chi_{c0}(4710)$	0+	$4710{\pm}~4~{\pm}5$	$64{\pm}~9~{\pm}10$	14 (10)
$\eta_{c1}(4800)$	1^{-}	$4785 {\pm} 37 {\pm} 119$	$457 {\pm} 93 {\pm} 157$	17 (12)
$T^*_{c\bar{c}1}(4055)^+$	1^{-}	4054 (fixed)	45 (fixed)	8 (7)
$T_{c\bar{c}1}(4200)^+$	1+	$4257 \pm 11 \pm 17$	$_{308\pm20\pm32}$	> 20 (> 20)
$T_{c\bar{c}1}(4430)^+$	1+	$4468 {\pm} 21 {\pm} 80$	$251{\pm}42{\pm}82$	15 (8)
$T_{c\bar{c}\bar{s}1}(4600)^0$	1+	$4578 {\pm} 10 {\pm} 18$	$133{\pm}28{\pm}69$	15 (12)
$T_{c\bar{c}\bar{s}1}(4900)^0$	1+	$4925 {\pm} 22 {\pm} 47$	$255 \pm 55 \pm 127$	12 (8)
$T^*_{c\bar{c}\bar{s}1}(5200)^0$	1-	$5225 {\pm} 86 {\pm} 181$	$226 {\pm} 76 {\pm} 374$	10 (8)
$T_{c\bar{c}\bar{s}1}(4000)^+$	1+	4003 (fixed)	131 (fixed)	> 20 (14)

Xiao-Rui LYu

IUNERZUZ4, Flague

Observation of a doubly charged tetraquark $T^*_{c\overline{s}0}(2900)^{++}$ [$c\overline{s}u\overline{d}$] and its neutral partner $T^*_{c\overline{s}0}(2900)^0$ [$c\overline{s}\overline{u}d$] PRL131, 0419 PRD108 012

PRL131, 041902(2023) PRD108, 012017(2023)

• First simultaneous amplitude analysis of $B^+ \to D^- D_s^+ \pi^+ \& B^0 \to \overline{D}^0 D_s^+ \pi^-$ with RUN 1+2 9 fb⁻¹ data

- $T_{c\bar{s}0}^*$ (2900) v.s. X_0 (2900)
 - Similar mass, but width and flavor contents are different.
- no isospin relation: $[c\overline{s}u\overline{d}]$ v.s. $[cs\overline{u}\overline{d}]$
- U-spin relation: $[c\overline{s}\overline{u}d]$ v.s. $[c\overline{d}\overline{u}s]$
- $T_{c\bar{s}0}^*(2900)$ mass and width larger than $X_0(2900)$

Xiao-Rui LYU

LHCb

Study on fully heavy tetraquark state

- ✤ Existence of $T_{Q_1Q_2\bar{Q}_3\bar{Q}_4}$ states ($Q_i = c \text{ or } b$) is expected by many QCD models
- ✤ $T_{bb\bar{b}\bar{b}}$ was searched for at LHCb and CMS, but not observed

[LHCb, JHEP 10, 086 (2018); CMS, PLB808, 135578(2020)]

- ✤ $T_{cc\bar{c}\bar{c}}$ states predicted to have $M \in [5.8, 7.4]$ GeV/c, away from known quarkonia and quarkonium-like exotic states
- LHCb observation of the first fully charmed tetraquark state X(6900) [ccccc] in $J/\psi+J/\psi$ final states

[LHCb, Sci. Bull. 23, 1983 (2020)]

Observations of fully charmed tetraquark state X(6600) [cccc]

CMS, PRL 132, 111901 (2024)

w/o inte	BW1	BW_2	BW_3
m (MeV)	$6552\pm10\pm12$	$6927\pm9\pm4$	$7287^{+20}_{-18} \pm 5$
Γ (MeV)	$124^{+32}_{-26}\pm 33$	$122^{+24}_{-21}\pm18$	$95^{+59}_{-40} \pm 19$
w/ inter	\mathbf{BW}_1	BW ₂	BW ₃
m (MeV)	6638+43+16	6847+44+48	7134+48+41
Γ (MeV)	440^{+230+110}_{-200-240}	$191\substack{+66+25\\-49-17}$	97 ⁺⁴⁰⁺²⁹ -29-26

- ATLAS and CMS both confirm the X(6900) state in $J/\psi + J/\psi$ final states
- CMS observe a new structure X(6600) and find an evidence of the X(7100)
- LHCb, ATLAS and CMS all see a broad enhancement at the low mass region

$\text{Di-}J/\psi$	Model A	Model B
<i>m</i> ₀	$6.41 \pm 0.08 \substack{+0.08 \\ -0.03}$	$6.65 \pm 0.02 \substack{+0.03 \\ -0.02}$
Γ	$0.59 \pm 0.35 \substack{+0.12 \\ -0.20}$	$0.44 \pm 0.05 \substack{+0.06 \\ -0.05}$
m_1	$6.63 \pm 0.05 \substack{+0.08 \\ -0.01}$	
Γ_1	$0.35\pm0.11\substack{+0.11\\-0.04}$	
m_2	$6.86 \pm 0.03^{+0.01}_{-0.02}$	$6.91 \pm 0.01 \pm 0.01$
Γ_2	$0.11\pm0.05^{+0.02}_{-0.01}$	$0.15 \pm 0.03 \pm 0.01$

Searches for $T_{cc\overline{c}\overline{c}}$ in other double charmonia

• ATLAS finds evidence of enhancement around 6.9 GeV in $J/\psi + \psi(2S)$ final states

$J/\psi + \psi(2S)$	Model α	Model β
m_3 Γ_3	$\begin{array}{c} 7.22 \pm 0.03 \substack{+0.01 \\ -0.04} \\ 0.09 \pm 0.06 \substack{+0.06 \\ -0.05} \end{array}$	$\begin{array}{c} 6.96 \pm 0.05 \pm 0.03 \\ 0.51 \pm 0.17 \substack{+0.11 \\ -0.10} \end{array}$

• Belle finds evidence of threshold enhancement in $\eta_c + J/\psi$ final states

Belle, JHEP 08 2023, 121 (2023)

ATLAS, PRL 131, 151902 (2024)

Heavy baryons

New excited Ω_c^0 states

Five Ω_c^{*0} states have been observed at LHCb

• Hint of another broad structures at 3.2 GeV and 3.3 GeV

New study of prompt $\Xi_c^+ K^-$ based on a full LHCb dataset

Besides the previous 5 states, two new states $\Omega_c(3185)^0$ and $\Omega_c(3327)^0$ are observed.

Basananaa	m (MoV)	$\Gamma(M_{0}V)$	$=$ $\mathbf{\check{\Sigma}}^{12}$
Resonance	m (Mev)	I (IVIEV)	_ <u>10</u>
$\Omega_c(3000)^0$	3000.44 ± 0.07	3.83 ± 0.23	
$\Omega_{c}(3050)^{0}$	3050.18 ± 0.04	0.67 ± 0.17	ate
$\Omega_c(3065)^0$	3065.63 ± 0.06	3.79 ± 0.20	PH 6-
$\Omega_c(3090)^0$	3090.16 ± 0.11	8.48 ± 0.44	
$\Omega_{c}(3119)^{0}$	3118.98 ± 0.12	0.60 ± 0.63	Ŭ M
$(\Omega_c(3185)^0)$	3185.1 ± 1.7	50 ± 7	2 7
$\Omega_{c}(3327)^{0}$	3327.1 ± 1.2	20 ± 5	0
			3000

Xiao-Rui LYU

Observation of new excited Ξ_b states

- Observes two new Ξ_b states $\Xi_b (6087)^0$ and $\Xi_b (6095)^0$ in $\Xi_b^0 \pi^+ \pi^-$
- Confirms the $\Xi_b(6100)^-$ observed by CMS

LHCb

Observation of the hidden-charm strange pentaquark [*ccuds*] PRL131, 031901(2023)

 J/ψ

- narrow structure in $J/\psi \Lambda$ in $B^- \rightarrow J/\psi \Lambda \bar{p}$, with 9 fb⁻¹ LHCb data
- $P_{c\bar{c}s}(4338)^0 \rightarrow J/\psi\Lambda$ observed with significance larger than 10σ
- $J^P = \frac{1}{2}^-$ preferred and close to $\Xi_c^+ D^-$ threshold
 - ≥ 0.8 MeV above $\Xi_c^+ D^-$;
 - \geq 2.9 MeV above $\Xi_c^0 \overline{D}^0$

$$M_{P_{cs}} = 4338.2 \pm 0.7 \pm 0.4 \,\mathrm{MeV}$$

 $\Gamma_{P_{cs}} = 7.0 \pm 1.2 \pm 1.3 \,\mathrm{MeV}$

First heavy pentaquark with strangeness!

 V_{cb}

 B^{-}

Evidence for $\Upsilon(1S, 2S) \rightarrow P_{c\bar{c}s}(4459)^0 X$

• LHCb found evidence for [*ccuds*] pentaquark candidate with strangeness:

 $\begin{array}{l} P_{c\bar{c}s}(4459)^{0} \text{ in } \Xi_{b}^{-} \rightarrow J/\psi \Lambda K^{-} \text{ decays, near} \\ \text{threshold of } \Xi_{c}^{0}\overline{D}^{*0}: \\ & \prod m(P_{c\bar{c}s}(4459)^{0}) = 4458.8 \pm 2.9^{+4.7}_{-1.1} \text{ MeV} \\ & \prod (P_{c\bar{c}s}(4459)^{0}) = 17.3 \pm 6.5^{+8.0}_{-5.7} \text{ MeV} \end{array}$

• Belle reports evidence for $P_{c\bar{c}s}(4459)^0 \rightarrow J/\psi\Lambda$ in inclusive $\Upsilon(1S, 2S)$ decays

Local significance is 4.0σ

mass: $4469.6 \pm 4.1 \pm 4.1$ MeV width: $17.3 \pm 9.2 \pm 6.3$ MeV

consistent with LHCb results

Add Gaussian constraint on mass and width → significance is 3.3σ including systematics.

Summary

- Two years of exciting period of finding new hadrons (mainly) from BESIII and LHCb, among which most of them are candidates of exotic hadrons
- Light hadrons: high statistics data is crucial to identify exotic feature of different known states and find new particles
 - a glueball-like state X(2370)
 - emerging strangenium(-like) states
 - distorted lineshape at thresholds of $p\bar{p}$, $N\bar{K}$ and $\Lambda\eta$
- Heavy hadrons:
 - better understanding of the X(3872) via its radiative decays
 - 8 new neutral charmonium(-like) states: $[c\overline{c}]$ or $[c\overline{c}q\overline{q}]$
 - 7 new tetraquark states: $[c\overline{c}u\overline{s}]; [c\overline{s}u\overline{d}]; [c\overline{s}\overline{u}d]$
 - 1 new pentaquark state with strangeness: [$c\bar{c}uds$]
 - 2 new Ω_c states and 2 new Ξ_b states
- More results based on higher statistics data can be expected regarding to the upcoming 3xL upgraded BEPCII-U, ongoing LHC RUN3 and Belle II.

Thank you!! 谢谢!

Backup

The Y states

 $\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$

112 events (520 fb⁻¹)

 $m(\psi(2S)\pi^+\pi^-)(GeV/c^2)$

• BABAR

Belle 110 events (673 fb⁻¹)

While not seen yet in B decays

Improved knowledges from BESIII

EFENT Open charm cross sections

JHEP2022, 55 (2022)

- essential to fully understand the XYZ states
- Important input for coupled-channel analysis

- Good agreement with existing measurements, with best precisions
- Structure at 4.39 GeV in D*D*?

Xiao-Rui LYU

Search for exotics in $B^- \to \Lambda_c^+ \overline{\Lambda}_c^- K^-$

- $\Lambda_c^+ \bar{\Lambda}_c^-$ and $\Lambda_c^- K^-$ systems are good places to search for exotics PRD 108, 012020 (2023)
- Near threshold enhancement of $Y(4630) \rightarrow \Lambda_c^+ \overline{\Lambda_c^-}$ is observed at Belle. However, the Breit-Wigner line shape is not supported by BESIII

Xiao-Rui LYU

ICHEP2024, Prague

Amplitude analysis of $B^+ \rightarrow J/\psi \phi K^+$

ΔΔ

- With Run 1 $B^+ \rightarrow J/\psi \phi K^+$ data, LHCb performed 1st amplitude fit and observed the X(4140), X(4274), X(4500) and $X(4700) \rightarrow [c\bar{c}s\bar{s}]$ tetraquark?
- **LHCb RUN 1+2**: 24K signals, about 6× larger than RUN 1 PRL127, 082001 (2021)

Xiao-Rui LYU

LHCh

Open flavor tetraquark

- D0 claimed evidence for the X(5568) in decaying to $B_s \pi^+$, interpreted as tetraqual state [*bsud*], but not seen in other experiments
- Observation of the open flavor tetraquark states $X_0(2900)$ and $X_1(2900)[cs\overline{ud}]$ in $B^+ \to D^+D^-K^+$
- The $D_{s0}^*(2317)^+ (D_s^+\pi^0)$ state was observed in 2003.
- It is argued to contain some **tetraquark** component in several theoretical descriptions, whose I = 1 partners can exist in the $D_s^+\pi^{\pm}$ final states.
- <u>Cheng & Hou:</u> It would be astonishing if a doubly charged resonance is found. [PLB 566, 193 (2003)]

Confirmation of open charm tetraquarks T_{cs}^* [$cs\overline{u}\overline{d}$] arXiv:2406.03156

- $T^*_{\overline{c}\overline{s}0}(2870)^0$ and $T^*_{\overline{c}\overline{s}1}(2900)^0$ are confirmed in a different decay channel $B^+ \rightarrow D^{*+}T^*_{\overline{c}\overline{s}}$
- No obvious structure in $D^{*\pm}K^+$ and D^+K^+ mass spectra

Property	This work	Previous work
$T_{\bar{c}\bar{s}0}^*$ (2870) ⁰ mass [MeV]	$2914 \pm 11 \pm 15$	2866 ± 7
$T^*_{\bar{c}\bar{s}0}(2870)^0$ width [MeV]	$128\pm22\pm23$	57 ± 13
$T^*_{\bar{c}\bar{s}1}(2900)^0 \text{ mass [MeV]}$	$2887\pm8\pm6$	2904 ± 5
$T^*_{\bar{c}\bar{s}1}(2900)^0$ width [MeV]	$92\pm16\pm16$	110 ± 12
$\mathcal{B}(B^+ \to T^*_{\bar{c}\bar{s}0}(2870)^0 D^{(*)+})$	$(4.5^{+0.6}_{-0.8}{}^{+0.9}_{-1.0}\pm 0.4) \times 10^{-5}$	$(1.2 \pm 0.5) \times 10^{-5}$
$\mathcal{B}(B^+ \to T^*_{\bar{c}\bar{s}1}(2900)^0 D^{(*)+})$	$(3.8^{+0.7+1.6}_{-1.0-1.1}\pm 0.3) imes 10^{-5}$	$(6.7 \pm 2.3) \times 10^{-5}$
$\frac{\mathcal{B}(B^+ \to T^*_{c\bar{s}0}(2870)^0 D^{(*)+})}{\mathcal{B}(B^+ \to T^*_{c\bar{s}1}(2900)^0 D^{(*)+})}$	$1.17 \pm 0.31 \pm 0.48$	0.18 ± 0.05

New charmonium-like states in $B^+ \rightarrow D^{*\pm} D^{\mp} K^+$ decays

 $B^+ \to D^{*\pm} D^{\mp} K^+$ topology similar to $B^+ \to D^- D^+ K^+$ decays

Pentaquark states at LHCb

• Observation of [$c\bar{c}uud$] pentaquarks: $P_{c\bar{c}}(4312)^+$, $P_{c\bar{c}}(4440)^+$, $P_{c\bar{c}}(4457)^+$ in $\Lambda_b^0 \to J/\psi p K^-$ decays; near thresholds of $\Sigma_c^+ \overline{D}^0$, $\Sigma_c^+ \overline{D}^{*0}$, J^P not determined

• Evidence of [$c\overline{c}uud$] pentaquark: $P_{c\overline{c}}(4337)^+$ in $B_s^0 \rightarrow J/\psi p\overline{p}$ decays

• Evidence for [*ccuds*] pentaquark candidate with strangeness:

 $P_{c\bar{c}s}(4459)^0$ in Ξ_b^- → J/ψΛK⁻ decays, near threshold of $\Xi_c^0 \overline{D}^{*0}$

Evidence of new excited charmed baryon Λ_c^*

arXiv: 2206.08822

- Study on $\bar{B}^0 \to \Sigma_c \ (2455)^{0,++} \pi^{\pm} \bar{p}$ with Belle data
- Combined fit to Σ_c (2455)^{0,++} π^{\pm} mass spectra

State	Mass (MeV/c^2)	Width (<i>MeV</i>)
$\Lambda_{c}(2880)^{+}$	2881.63 ± 0.24	$5.6^{+0.8}_{-0.6}$
$\Lambda_{c}(2940)^{+}$	2939.6 ^{+1.3}	20 ⁺⁶ ₋₅
$\Lambda_c(2910)^+$ (this analysis)	$2913.8 \pm 5.6 \pm 3.8$	$51.8 \pm 20.0 \pm 18.8$

a good candidate for $\Lambda_c \left(\frac{1}{2}, 2P\right)$ [arXiv:2207.03022]

significance with 4.2 σ after considering possible $\Lambda_c(2880)$ and $\Lambda_c(2940)$ contributions

Xiao-Rui LYU