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Big Science in 21st century

Probing the fundamental structure of nature
requires complex experimental devices, large infrastructures
and big collaborations.
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Big Science = Big Data

https://a3d3.ai/
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Data reduction workflow @ LHC

CMS Experiment
40 MHz collision rate
~1B detector channels

On-detector ASIC
compression
~100 ns latency
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Data reduction workflow @ LHC
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Make physics discoveries with
0,0025% of the events!

(the rest is lost...)

Higgs boson decay to two photons Higgs boson decay to four leptons
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Searching for something

o This works well when we know what to search
23 VS BaC for (eg, the Higgs boson and motivated BSM
summary plot theories)

=> strong physics assumptions guide each step
of the data analysis workflow:

VV/VH/HH/Vy resonances

Resonances

1.data reduction
2.data preprocessing
3.final high-level features statistical interpretation

Overview of CMS EXO results
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https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryPlotsEXO13TeV#Overall_summary_plot
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G#Summary_of_B2G_public_results_Au
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G#Summary_of_B2G_public_results_Au
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G#Summary_of_B2G_public_results_Au
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2023-018/

Searching for anything
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VV/VH/HH/Vy resonances
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Overview of CMS EXO results

CMs Preliminary

August 2023

amsomrs

w578 19110350

% 5
Lower mass limit at 95% CL [TeV]

0280 210302708 1
8038 210302708 21 |1

owsons 205
anzatg 205

i+
ova58 1510100

a3507 191103761 (=

a02§ 150801

0308 131110151 (10 +1j5 5

as20 o

But nature might be different
from all of these

It might be that we are not looking
in the right corner because we might
have not imagined (yet) how new
physics look like
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Look at all corners
==y

Go back looking at data
@\ with no signal hypothesis

i
Result Observation
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Conclusion Question

Y 1Y% M s " If we identify an anomalous signal we can

Expetiment o formulate an alternative hypothesis

To be tested with new data and
traditional techniques

This approach is what we call:

ANOMALY DETECTION

13



The role of Al

* Today we can implement anomaly
detection efficiently with Al

https://iml-wg.github.io/HEPML-LivingReview/

e Machine Learning is used in particle
ph)’SiCS since the ‘80s o

Auto- Normalizing

Mixture
models
Generative

modeling
/ density Diffusion
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- it was shallow networks back then

Anomaly
detection

4 /
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\ Decorrelation ™ ~Cvs
methods

Machine learning

- this the era of Deep Learning parﬁcle'nphysms

estimation

e Over the last decade a rapid progress
guided by technological breakthrough
led to a revolution in this area
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See |. Duarte talk
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https://iml-wg.github.io/HEPML-LivingReview/
https://indico.cern.ch/event/1291157/contributions/5958213/

A data-driven search strategy with Al

anomalies
e Today we can implement anomaly detection

efficiently with Al

e [dentifying rare events in data sets which deviate
significantly from the majority of the data and do
not conform to “normal” behaviour

e Normal behaviour can be learnt through a NN

normal behaviour
(a data control region populated by SM)
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A data-driven search strategy with Al

Take the most studied physics case:
search for a dijet resonance

BACKGROUND JET ANOMALOUS JET
(single quark/gluon) (ex, resonance X
decaying to N quarks)

Train a NN to learn the SM QCD background in a control region

Then tag each jet as anomalous in the signal region with no assumption
on how it looks like

16



How train an Al algorithm
to identify anomalous
jets?

Learn to understand
regular jets —
look for outliers

Encode a ‘prior’ of
potential sighals -
look for similar

Try to separate
two groups of jets -
learn to identify signals

Unsupervised Weakly-supervised Semi-supervised

_—mmm
Increasing model dependence

17



First CMS search looking for anomalous dijet events
using novel ML techniques released this year!

Model-agnostic search for dijet resonances with anomalous
jet substructure in proton-proton collisions at /s = 13 TeV

The CMS Collaboration
CMS-PAS-EXO-22-026
/"f/ How ;rain an Al algorithm \\\‘
\5\ to identify anomalous “N
jets? »

9/\1”‘ S

Learn to understand\ Try to separate \ @de a ‘prior’ ON_
regular jets — ) two groups of jets - )  potential signals — )

look for outliers A\ Iearn to identify 5|gnals \ look for similar

Semi-supervised

Unsupervised Weakly-supervised

Increasing model dependence

18


http://www.apple.com/uk
http://cds.cern.ch/record/2892677?ln=en

p-value

Anomaly detection in action @ CMS

e Inject signal of varying cross section in background MC and calculate p-value

e Obtain comparison of sensitivity of different methods against standard analysis methods

CMS Simulation Prelim
| o o [ o o

107"+

w

L X YY(YY ->qq) =

-#- VAE-QR
—+— CWola Hunting

10°

10-5-"* TNT
—~— CATHODE
—#- CATHODE-b

10-7 QuAK T
QUAK: Model Specific

->- 121 <0.4 & mgp > 50 GeV
109}

132 < 0.65 & mgp > 50 GeV
-®- Inclusive

10—11%

CMS-PAS-EXO-22-026

See M. Sommerhalder talk

B E—
Cross Section (fb)

traditional
dijet search

“4_— dedicated search

for this signal

anomaly detection
methods

Large discovery potential
improvement wrt standard analysis
methods for a broad range of signals!
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http://cds.cern.ch/record/2892677?ln=en
https://indico.cern.ch/event/1291157/contributions/5892341/

Data reduction workflow @ LHC

99.75% events Level-1
I‘EjECtEd! Trigger

Offline
IS NEW PHYSICS EVEN THERE? analysis

event filtering starts very early in the data processing

99% events H igh'l-eve'
rejected! Trigger

20



Data reduction workflow @ LHC

g

NN
; H’::?:
2

99.75% events Level-1
I‘EjECtEd! Trigger

Offline

Addressing the challenge as :
analysis

early as possible in the data
reduction workflow!

99% events H igh'l-eve'
rejected! Trigger
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Data reduction workflow @ LHC

99.75% events Level-1

I‘EjECtEd! Trigger

* Neural Networks can become relatively large = memory and number of
operations required for the inference can easily explode

e Strict constraints at L1 trigger:

- latency of O(ps) = use FPGA hardware

- scarse resources (mostly occupied to calibrate sensors, build physics objects, etc..)

22



Data reduction workflow @ LHC

How to fit a Neural Network here??

99.75% events Level-1

I‘EiECtEd! Trigger

* Neural Networks can become relatively large = memory and number of
operations required for the inference can easily explode

e Strict constraints at L1 trigger:

- latency of O(ps) = use FPGA hardware

- scarse resources (mostly occupied to calibrate sensors, build physics objects, etc..)
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Bring ML models to hardware for real-time Al
high level synthesis for machine learning

A tool to efficiently program the FPGA hardware for Neural Networks
with experimental constraints in mind!

Tvado ™ HLS
Keras
TensorFlow '
PyTorch

HLYS)

Co-processing kernel

L= hls 4 ml
N .

COMPILER
compressed
model — HLS , —>
conversion Custom firmware
design

Catapult

Usual ML

software workflow jf Menbr
) tune ConﬁgUI'Cﬂ'iOn A Siemens Business
. PYTHORCH By ici

t T € ONNX

https:/fastmachinelearning.org/hls4ml/
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https://fastmachinelearning.org/hls4ml/

Bring ML models to hardware for real-time Al
high level synthesis for machine learning

Colliding particles not cars: CERN's
machine learning could help self-
driving cars

CERN and software company Zenseact wrap up a joint research project that could
allow autonomous-driving cars to make faster decisions, thus helping avoid accidents

25 JANUARY, 2023 | By Priyanka Dasgupta

CERN's expertise in machine learning could help the field of autonomous driving (Image: Zenseact)

)\ /“f' e
< &0

Zzenseact

COMPUTING | FEATURE

Hunting anomalies with an Al trigger

31 August 2021

Jennifer Ngadiuba and Maurizio Pierini describe how ‘unsupervised’ machine

learning could keep watch for signs of new physics at the LHC that have not

yet been dreamt up by physicists.

SIEMENS

2= Fermilab

Sparking the interest of industry

(e.g., Google, Volvo, Siemens, AMD, ...)
nature

machine

intelligence

<]V Quantized neural networksontheedge

Siemens Digital Industries Software Newsroom Overview All news Blogs Vv

PRESS RELEASE

Siemens simplifies development of Al accelerators for
advanced system-on-chip designs with Catapult Al NN

May 21, 2024
Plano, Texas
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Ultra-fast anomaly detection @ CMS

CMS establishing a new trigger paradigm with sub-ps
autoencoders for anomaly detection!

\ /

neural network neural network
encoder decoder

T~

See A. Gandrakota talk

Latency LUTs | FFs DSPs | BRAMs

2 ticks

AXO' 'TL |5 21% |~0 |0 0
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https://indico.cern.ch/event/1291157/contributions/5889610/

Ultra-fast anomaly detection @ CMS

Now taking data!

: : : : CMS-DP-2023-079
Anomaly eXtraction Online Level-1 Trigger algorithm CMS-DP-2024-059

See A. Gandrakota talk

CMS Preliminary 0.527 fb~!, 2024 (13.6 TeV)

I I 1 I | I I I I I I I 1 I | 1 I I I I I I I I |

2 108 B 1 CMS Experiment at the LHC, CERN
c . Data recorded: 2023-May-24 01:42:17.826112 GMT
o : - : :42:17.
> - Run 380470 . '//é Run / Event/ LS: 367883 / 374187302 / 159
L 105 1 All Scouting
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... AXO Pure

Otherwise
untriggered
events!
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An otherwise untriggered

0 500 1000 1500 2000 2500 high_multiplicity event!
Emulated AXO Score
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https://cds.cern.ch/record/2876546?ln=en
https://cds.cern.ch/record/2904695?ln=en
https://indico.cern.ch/event/1291157/contributions/5889610/

A look into the future

Real-time Inference with 2D Convolutional Neural
Networks on Field Programmable Gate Arrays for

High-rate Particle Imaging Detectors
—
Smart sensors using artificial intelligence

for on-detector electronics and ASICs

—

Smartpixels: Towards on-sensor inference of charged
particle track parameters and uncertainties

Machine learning evaluation in the Global Event
Processor FPGA for the ATLAS trigger upgrade

Neural-network-based level-1 trigger upgrade for the

Neural network accelerator for quantum control SuperCDMS experiment at SNOLAB

Link to articles

Low latency optical-based mode tracking with machine learning deployed
on FPGAs on a tokamak

e The CMS anomaly detection trigger is a first step towards a revolutionary new paradigm
for data acquisition at colliders (and beyond)

27
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A look into the future

Real-time Inference with 2D Convolutional Neural
Networks on Field Programmable Gate Arrays for

High-rate Particle Imaging Detectors
—
Smart sensors using artificial intelligence

for on-detector electronics and ASICs

—

Smartpixels: Towards on-sensor inference of charged
particle track parameters and uncertainties

Machine learning evaluation in the Global Event
Processor FPGA for the ATLAS trigger upgrade

Neural-network-based level-1 trigger upgrade for the
SuperCDMS experiment at SNOLAB

Neural network accelerator for quantum control

Link to articles

Low latency optical-based mode tracking with machine learning deployed
on FPGAs on a tokamak

e The CMS anomaly detection trigger is a first step towards a revolutionary new paradigm
for data acquisition at colliders (and beyond)

e Al at the edge of experiments is a game changer — HEP at the forefront of R&D
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A look into the future

Real-time Inference with 2D Convolutional Neural
Networks on Field Programmable Gate Arrays for

High-rate Particle Imaging Detectors
—
Smart sensors using artificial intelligence

for on-detector electronics and ASICs

—

Smartpixels: Towards on-sensor inference of charged
particle track parameters and uncertainties

Machine learning evaluation in the Global Event
Processor FPGA for the ATLAS trigger upgrade

Neural-network-based level-1 trigger upgrade for the

Neural network accelerator for quantum control SuperCDMS experiment at SNOLAB

Link to articles

Low latency optical-based mode tracking with machine learning deployed
on FPGAs on a tokamak

e The CMS anomaly detection trigger is a first step towards a revolutionary new paradigm
for data acquisition at colliders (and beyond)

e Al at the edge of experiments is a game changer — HEP at the forefront of R&D

e Requirements for Al in particle physics go far beyond industrial and commercial
applications because of extreme environments:

- speed, throughput, fidelity, interpretability, and reliability

29
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A look into the future

Real-time Inference with 2D Convolutional Neural
Networks on Field Programmable Gate Arrays for

High-rate Particle Imaging Detectors
R p—

Smart sensors using artificial intelligence
for on-detector electronics and ASICs

—

Smartpixels: Towards on-sensor inference of charged
particle track parameters and uncertainties

Machine learning evaluation in the Global Event
Processor FPGA for the ATLAS trigger upgrade

Neural-network-based level-1 trigger upgrade for the

Neural network accelerator for quantum control SuperCDMS experiment at SNOLAB

Link to articles

Low latency optical-based mode tracking with machine learning deployed
on FPGAs on a tokamak

e The CMS anomaly detection trigger is a first step towards a revolutionary new paradigm
for data acquisition at colliders (and beyond)

e Al at the edge of experiments is a game changer — HEP at the forefront of R&D

e Requirements for Al in particle physics go far beyond industrial and commercial
applications because of extreme environments:

- speed, throughput, fidelity, interpretability, and reliability

e Demonstrators TODAY crucial to learn NOW lessons for the future
30
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A look into the future

NexTGen

CERN news CERN

The next-generation triggers for \
CERN detectors

The recently launched Next-Generation Triggers project is set to remarkably increase
the efficiency, sensitivity and modelling of CERN experiments

11APRIL,2024 | By Antonella Del Rosso ® Fric & Wendy SChmldt foundation fund a CERN
——— R — | mmnz project that will enhance the physics reach of the
ATLAS and CMS experiments at HL-LHC and
beyond using novel technologies:
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,/< v \_\[. FoIN ;“ / .”' e ‘ . . .
™1 Lt neural network optimisation
[

1 L= o o 5

g i ,‘w"

quantum-inspired algorithms

r[i Ji L
L

high-performance computing and FPGAs

theoretical modelling

" 3 v
From top to bottom: ATLAS, CERN Data Centre and CMS (Image: CERN)
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A look into the future

NexTGen

CERN news CERN

The next-generation triggers for \\_/

CERN detectors

The recently launched Next-Generation Triggers project is set to remarkably increase
the efficiency, sensitivity and modelling of CERN experiments

11APRIL,2024 | By Antonella Del Rosso ® Fric & Wendy SChmldt foundation fund a CERN

wE T 0 v g L ST TSN mmm=  project that will enhance the physics reach of the
ATLAS and CMS experiments at HL-LHC and
beyond using novel technologies:

"

- "~ i ‘V“VSY
T T L1

N \‘, -.' _. w. /’ b
| WM
1]
1 ]

neural network optimisation

quantum-inspired algorithms

high-performance computing and FPGAs

theoretical modelling

The NextGen Triggers project will mark a new chapter in high-energy
physics, leveraging upgraded event-selection systems and data-processing
techniques to unlock a realm of discoveries.
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https://home.cern/news/news/computing/next-generation-triggers-cern-detectors
https://nextgentriggers.web.cern.ch/

Summary & Outlook

e Our scientific mission is beautiful and engaging: answer to fundamental questions about
the universe with very advanced particle detectors

A3Da3 institute
’a‘ | | | | [ [
- enormous challenges due to large volume of data Drowp S 1 Taiyr PR -
and experimental system constraints g *® ]
a
. . -g., CPU/GPU
- Al offers a solution because of its £ 10 e LT -
scalable capabilities 3 ’ Cloud
AN 1013 _
- but not without an intense effort to change our 0t ot e i
approaches at every data processing stage
9L —
" LiGo Z£IF
° ° ° ° ° . . N
* Promote interdisciplinary collaborations: physicists, ol 9 Oo i
data scientists, computer scientists, electrical ., .":eC“b.i °N?:f“x i)
. . 10- 10- 10- 10 10 10 10 10
and computer engineers, software engineers Latency requirement [s]

¢ To invent solutions that would not be available in the world otherwise

* Then inject back into society the technology innovation fuelled by our unique physics
requirements
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