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Machine learning  
for particle physics

Particle physics  
for machine learning

Thank you!



Big Science in 21st century
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Probing the fundamental structure of nature  
requires complex experimental devices, large infrastructures 
and big collaborations.

The Large Hadron  
Collider

LIGO/VIRGO interferometers

Vera C. Rubin Observatory The DUNE neutrino experiment



Big Science = Big Data
• Increasingly complex data both in volume and  

dimensionality 

• Increasing need for efficient and accurate data  
processing pipelines 

• Challenge in simulating expectations for what  
experiments may observe 

• But also need for innovative data & discovery 
driven physics analyses approaches

4Sloan Digital Sky Survey Interactions in LArTPC A LHC collision

https://a3d3.ai/
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Collision frequency: 40 MHz 
Particles per collision: O(103) 
Detector resolution: ~ 1B channels

Extreme data rates of ~Pb/s!

Big Data @ the Energy Frontier
The Large Hadron Collider (LHC)



Data reduction workflow @ LHC
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On-detector ASIC 
compression 
~100 ns latency

CMS Experiment 
40 MHz collision rate 
~1B detector channels

Pb/s 
40 MHz

FPGA filter stack 
~μs latency

10s Tb/s 
100s kHz

On-prem CPU/GPU filter farm 
~100 ms latency

10s Gb/s 
~5 kHz

Worldwide 
computing grid 
Exabyte-scale 
datasets

Level-1 
Trigger

High-Level 
Trigger

Offline 
analysis
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Make physics discoveries with 
0,0025% of the events!  

(the rest is lost…)

Higgs boson decay to two photons Higgs boson decay to four leptons



Searching for something
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’23 CMS EXO summary plot

’23 CMS B2G 
summary plot

’23 ATLAS Dark Matter summary

This works well when we know what to search 
for (eg, the Higgs boson and motivated BSM 
theories) 
➔ strong physics assumptions guide each step  
of the data analysis workflow: 

1.data reduction 
2.data preprocessing 
3.final high-level features statistical interpretation

https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryPlotsEXO13TeV#Overall_summary_plot
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G#Summary_of_B2G_public_results_Au
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G#Summary_of_B2G_public_results_Au
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G#Summary_of_B2G_public_results_Au
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2023-018/


Searching for anything
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’23 CMS EXO summary plot

’23 CMS B2G 
summary plot

’23 ATLAS Dark Matter summary

But nature might be different 
from all of these

It might be that we are not looking 
in the right corner because we might 
have not imagined (yet) how new 
physics look like

https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryPlotsEXO13TeV#Overall_summary_plot
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G#Summary_of_B2G_public_results_Au
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G#Summary_of_B2G_public_results_Au
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G#Summary_of_B2G_public_results_Au
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2023-018/
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Go back looking at data  
with no signal hypothesis

Remain surprise!

If we identify an anomalous signal we can 
formulate an alternative hypothesis

To be tested with new data and 
traditional techniques This approach is what we call: 

ANOMALY DETECTION



The role of AI
• Today we can implement anomaly 

detection efficiently with AI 

• Machine Learning is used in particle 
physics since the ‘80s 

- it was shallow networks back then 

• Over the last decade a rapid progress 
guided by technological breakthrough  
led to a revolution in this area 

- this the era of Deep Learning
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https://iml-wg.github.io/HEPML-LivingReview/

See J. Duarte talk

https://iml-wg.github.io/HEPML-LivingReview/
https://indico.cern.ch/event/1291157/contributions/5958213/


• Today we can implement anomaly detection 
efficiently with AI 

• Identifying rare events in data sets which deviate  
significantly from the majority of the data and do  
not conform to “normal” behaviour 

• Normal behaviour can be learnt through a NN

A data-driven search strategy with AI
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anomalies

normal behaviour 
(a data control region populated by SM)



A data-driven search strategy with AI
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Train a NN to learn the SM QCD background in a control region  

Then tag each jet as anomalous in the signal region with no assumption 
on how it looks like

Take the most studied physics case:  
search for a dijet resonance

BACKGROUND JET 
(single quark/gluon)

ANOMALOUS JET 
(ex, resonance X  

decaying to N quarks)
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Increasing model dependence

Unsupervised Weakly-supervised Semi-supervised
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First CMS search looking for anomalous dijet events  
using novel ML techniques released this year!

CMS-PAS-EXO-22-026

http://www.apple.com/uk
http://cds.cern.ch/record/2892677?ln=en


Anomaly detection in action @ CMS
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Large discovery potential 
improvement wrt standard analysis 
methods for a broad range of signals!

• Inject signal of varying cross section in background MC and calculate p-value 

• Obtain comparison of sensitivity of different methods against standard analysis methods

CMS-PAS-EXO-22-026

See M. Sommerhalder talk

traditional  
dijet search

dedicated search  
for this signal

anomaly detection  
methods

http://www.apple.com/uk
http://cds.cern.ch/record/2892677?ln=en
https://indico.cern.ch/event/1291157/contributions/5892341/


Data reduction workflow @ LHC
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On-detector ASIC 
compression 
~100 ns latency

CMS Experiment 
40 MHz collision rate 
~1B detector channels

Pb/s 
40 MHz

FPGA filter stack 
~μs latency

10s Tb/s 
100s kHz

On-prem CPU/GPU filter farm 
~100 ms latency

10s Gb/s 
~5 kHz

Worldwide 
computing grid 
Exabyte-scale 
datasets

Level-1 
Trigger

High-Level 
Trigger

Offline 
analysis

99.75% events  
rejected!

99% events  
rejected!

IS NEW PHYSICS EVEN THERE? 
event filtering starts very early in the data processing
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Addressing the challenge as 
early as possible in the data 
reduction workflow!
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• Neural Networks can become relatively large → memory and number of 
operations required for the inference can easily explode 

• Strict constraints at L1 trigger: 

- latency of O(μs) → use FPGA hardware 

- scarse resources (mostly occupied to calibrate sensors, build physics objects, etc..)

How to fit a Neural Network here??
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2 Building neural networks with hls4ml

In this section we give an overview of the basic task of translating a given neural network model into
a firmware implementation using HLS. We then pick a specific use-case to study, though the study
will be discussed in a way that is meant to be applicable for a broad class of problems. We conclude
this section by discussing how to create an e�cient and optimal firmware implementation of a neural
network in terms of not only performance but also resource usage and latency.

2.1 hls4ml concept

Our basic task is to translate a trained neural network by taking a model architecture, weights, and
biases and implementing them in HLS in an automated fashion. This automated procedure is the task
of the software/firmware package, hls4ml. A schematic of a typical workflow is illustrated in Fig. 1.
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hls  4  ml

hls4ml

HLS  4  ML

Figure 1: A typical workflow to translate a model into a firmware implementation using hls4ml.

The part of the workflow that is illustrated in red indicates the usual software workflow required
to design a neural network for a specific task. This usual machine learning workflow, with tools such
as Keras and PyTorch, involves a training step and possible compression steps (more discussion
below in Sec. 2.3) before settling on a final model. The blue section of the workflow is the task of
hls4ml which translates a model into an HLS project that produces a firmware block. This automated
tool has a number of configurable parameters which can help the user customize the network translation
for their application.

The time to perform the hls4ml translation is much shorter (minutes to hours) than a custom
design of a neural network and can be used to rapidly prototype machine learning algorithms without
dedicated engineering support. For physicists, this makes designing physics algorithms for the trigger
or DAQ significantly more accessible and e�cient, thus allowing the "time to physics" to be greatly
reduced.

– 5 –

Catapult

Bring ML models to hardware for real-time AI

high level synthesis for machine learning

A tool to efficiently program the FPGA hardware for Neural Networks  
with experimental constraints in mind!

https://fastmachinelearning.org/hls4ml/

https://fastmachinelearning.org/hls4ml/
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Bring ML models to hardware for real-time AI

high level synthesis for machine learning
Sparking the interest of industry 

(e.g., Google, Volvo, Siemens, AMD, …)



Ultra-fast anomaly detection @ CMS

25

CMS establishing a new trigger paradigm with sub-μs 
autoencoders for anomaly detection!

See A. Gandrakota talk

https://indico.cern.ch/event/1291157/contributions/5889610/


Ultra-fast anomaly detection @ CMS

26

CMS-DP-2023-079 
CMS-DP-2024-059

Now taking data!

An otherwise untriggered 
high-multiplicity event!

See A. Gandrakota talk

Otherwise 
untriggered  

events!

Anomaly eXtraction Online Level-1 Trigger aLgorithm

https://cds.cern.ch/record/2876546?ln=en
https://cds.cern.ch/record/2904695?ln=en
https://indico.cern.ch/event/1291157/contributions/5889610/


A look into the future

• The CMS anomaly detection trigger is a first step towards a revolutionary new paradigm 
for data acquisition at colliders (and beyond)
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Link to articles

https://inspirehep.net/literature?sort=mostrecent&size=25&page=1&q=hls4ml&ui-citation-summary=true
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Link to articles
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A look into the future

• The CMS anomaly detection trigger is a first step towards a revolutionary new paradigm 
for data acquisition at colliders (and beyond) 

• AI at the edge of experiments is a game changer — HEP at the forefront of R&D 

• Requirements for AI in particle physics go far beyond industrial and commercial 
applications because of extreme environments: 

- speed, throughput, fidelity, interpretability, and reliability 

• Demonstrators TODAY crucial to learn NOW lessons for the future
30

Link to articles

https://inspirehep.net/literature?sort=mostrecent&size=25&page=1&q=hls4ml&ui-citation-summary=true
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CERN news

A look into the future

• Eric & Wendy Schmidt foundation fund a CERN 
project that will enhance the physics reach of the 
ATLAS and CMS experiments at HL-LHC and 
beyond using novel technologies: 

- neural network optimisation 

- quantum-inspired algorithms 

- high-performance computing and FPGAs 

- theoretical modelling

https://home.cern/news/news/computing/next-generation-triggers-cern-detectors
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CERN news

A look into the future

• Eric & Wendy Schmidt foundation fund a CERN 
project that will enhance the physics reach of the 
ATLAS and CMS experiments at HL-LHC and 
beyond using novel technologies: 

- neural network optimisation 

- quantum-inspired algorithms 

- high-performance computing and FPGAs 

- theoretical modelling

The NextGen Triggers project will mark a new chapter in high-energy 
physics, leveraging upgraded event-selection systems and data-processing 

techniques to unlock a realm of discoveries.

https://home.cern/news/news/computing/next-generation-triggers-cern-detectors
https://nextgentriggers.web.cern.ch/


Summary & Outlook
• Our scientific mission is beautiful and engaging: answer to fundamental questions about 

the universe with very advanced particle detectors 

- enormous challenges due to large volume of data  
and experimental system constraints 

- AI offers a solution because of its  
scalable capabilities 

- but not without an intense effort to change our  
approaches at every data processing stage 

• Promote interdisciplinary collaborations: physicists,  
data scientists, computer scientists, electrical  
and computer engineers, software engineers 

• To invent solutions that would not be available in the world otherwise 

• Then inject back into society the technology innovation fuelled by our unique physics 
requirements

32
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Machine learning  
for particle physics

Particle physics  
for machine learning

Thank you!


