

Are parton showers in a quark-gluon plasma strongly coupled?

Shahin Iqbal

NCP (Islamabad) and CERN (Geneva)

ICHEP 2024 Prague July 19, 2024

Reporting on work done in collaboration with Peter Arnold and Omar Elgedawy

The Problem of Overlapping formation times

Energy loss of high energy parton in a QGP

Consider the energy loss of a high energy gluon in a QGP

Assumptions:

- Thick, homogenous medium. Imagine a cascade that stops in the medium!
- Multiple scattering aka. \hat{q} approximation.
- Large-Nc limit of QCD.
- Will be looking at p_{\perp} —integrated rates.
- Initial particle is approximately on-shell.

Theoretically the simplest situation for now, although the formalism is not restrictive.

Landau-Pomeranchuk-Migdal effect

Light cannot resolve details smaller than its wavelength!

m

Indistinguishable from

LPM effect: actual rate is smaller than the naive expectation!

LPM effect in QCD

- LPM effect in QCD is qualitatively different than in QED.
- LPM suppression is smaller for softer gluons.
- Formation times grow with gluon energy as

Idealized Monte-Carlo?

• Rolls a classical dice for each time-step with the splitting probability weighted by the LPM splitting rate.

Weakly- vs. Strongly-coupled showers

Parametrically the time between democratic splittings $t_{rad} \sim \frac{t_{form}}{t_{rad}}$.

 $\alpha \ll 1$

 $\alpha \sim not too small$

 $\alpha \rightarrow large$

Naively, Idealized Monte-Carlo is really just weak-coupling

Not necessarily!

- The QCD coupling α_s is only moderately small at energy scales reached in real-life heavy-ion collisions.
- Previous authors have shown that corrections from soft bremsstrahlung give large double logarithmic enhancements, however these corrections can be absorbed into an effective value of \hat{q} . (Mehtar-Tani, Wu, Blaizot, Iancu)

Refined Question: Overlap effects that can't be absorbed into an effective \hat{q} ?

- Consider democratic splittings i.e. each daughter carries off roughly equal energy.
- Distance between subsequent splittings decreases parametrically.
- Shower will stop/thermalize with the medium after

$$l_{stop} \sim \alpha^{-1} \sqrt{E_0/\hat{q}}$$

Energy deposition distribution

• As a theorist's thought experiment, imagine measuring the distribution of energy deposited by the shower as it moves and evolves in time (or *z*-direction).

$$l_{stop} = \langle z \rangle = E_0^{-1} \int_z z \epsilon(z) =$$
 First moment of $\epsilon(z)$

• The width
$$\sigma$$
 is same order i.e. $\sigma \sim lpha^{-1} \sqrt{E_0/\hat{q}}$

• Any ratio of such quantities e.g.
$$\frac{\sigma}{l_{stop}}$$
 will be independent

of \hat{q} .

A measure of overlap effects that cannot be absorbed into an effective q-hat

• We calculate overlap effects on the ratio $\frac{\sigma}{l_{stop}}$ for a high energy gluon shower. • In large-Nf QED, $\frac{\sigma}{l_{stop}} \approx \frac{\sigma}{l_{stop}}^{LO} (1 + \chi \alpha + O(\alpha^2))$ with $\chi \alpha \approx -0.87 N_f \alpha_{QED}(\mu)$, i.e. nearly a 100 % correction.

A measure of overlap effects that cannot be absorbed into an effective q-hat

• We calculate overlap effects on the ratio $\frac{\sigma}{l_{stop}}$ for a high energy gluon shower. • In large-Nf QED, $\frac{\sigma}{l_{stop}} \approx \frac{\sigma}{l_{stop}}^{LO} (1 + \chi \alpha + O(\alpha^2))$ with $\chi \alpha \approx -0.87 N_f \alpha_{QED}(\mu)$, i.e. nearly a 100 % correction.

- In stark contrast, for an all gluon Nf=0, large-Nc QCD, $\chi \alpha \sim 0.1 N_c \alpha_s$, i.e barely a 1% correction.
- Why is the correction so radically different between QED and QCD?

QCD with $N_f \gg N_c \gg 1$

Overlap corrections for QCD in $N_f \gg N_c \gg 1$ limit

- We consider now QCD in the opposite limit of very large number of quarks.
- QCD showers made up entirely of $q \rightarrow qg$ and $g \rightarrow q\bar{q}$ processes.
- Goal: To decide if the small correction in QCD was an accidental cancellation in no quarks limit, or a broader property of QCD itself.

Review of Single splitting result.

rate \propto (Splitting matrix element at \bar{t}) × (3-particle evolution) × (Splitting matrix element at t)

LPM at next-to-leading order

Same idea, but a lot more complicated!

- Many different time orderings and permutations.
- Non-trivial helicity structure.
 Splitting matrix elements related to *Helicity dependent* DGLAP splitting functions.
- Use Harmonic Oscillator (a.k.a. multiple scattering approx. or \hat{q} approx.) and Large-Nc limit to simplify things.
- The final result $\frac{d\Gamma}{dxdy} = \int d\Delta t \ (complicated..)$

Many, many contributions....

 $q \rightarrow qg$ virtual corrections

With the result.....

???

With the result.....

 $\chi \alpha \sim 0.5\% \times N_f \alpha_s$

How is QCD different? A qualitative explanation

How is QCD different? A qualitative explanation

For QED
$$t_{form}(x_{\gamma}) \sim \sqrt{\frac{E^2}{\omega_{rad}\hat{q}}} \sim \sqrt{\frac{E}{x_{\gamma}\hat{q}}}$$
 for $x_{\gamma} \ll 1$.

For QCD
$$t_{form}(x_g) \sim \sqrt{\frac{\omega_{rad}}{\hat{q}}} \sim \sqrt{\frac{x_g E}{\hat{q}}}$$
 for $x_g \ll 1$.

Conclusion

- Small size of overlap effects for pure gluon ($N_f = 0$) showers was NOT a numerical accident : Soft photons are affected much more significantly by a subsequent pair production than soft gluons are.
- Take away for now: Overlap correction effects that cannot be absorbed into an effective value of \hat{q}_{eff} are small for QCD for both $N_f \gg 1$ and $N_f = 0$.
- Could $N_f \sim N_c$ change the situation?

Thank You!

Double logarithmic enhancement from soft bremsstrahlung

- Probability of hard splittings overlapping with soft bremsstrahlung is enhanced by large logarithms.
- Even if $\alpha_s(\mu)$ is small, the probability can be large when the double log is large.
- In our case, $E \gg T$.
- These effects can be absorbed into $\hat{q}_{\it eff}$

Overlap corrections for QCD in $N_f \gg N_c \gg 1$ limit

