

# New results of reactor $\bar{\nu}_e$ oscillation using 3800 days of RENO data

Sanghoon Jeon

for the RENO Collaboration

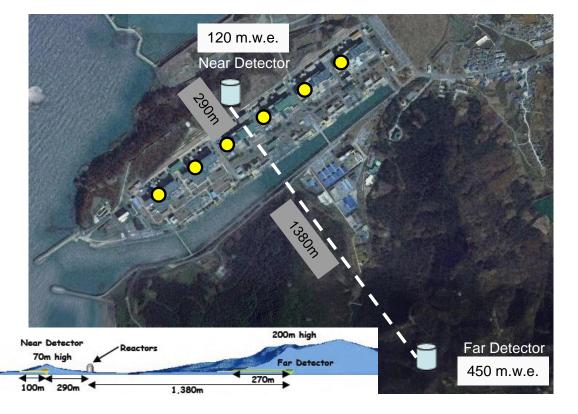
42nd International conference on high energy physics July 17-24, 2024



### RENO

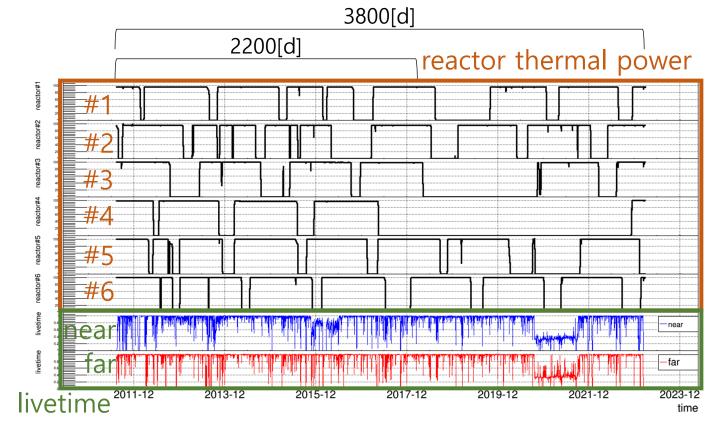


- Reactor Experiment for Neutrino Oscillation
- 9 institution and 40 physicsists


• reactor  $\bar{\nu}_{\rho}$  oscillation at Hanbit Nuclear Plant



Start of project : 2006


The first experiment running with both near & far detectors from Aug. 2011





### **RENO Status & Data Taking**

- RENO DAQ running
  - Aug. 2011 ~ Mar. 2023.
- ~3800[days] livetime
- planning to re-operate DAQ of the near detector
  - =>RENE experiment (sterile neutrino search)



| period                | live time   | result     |
|-----------------------|-------------|------------|
| Aug. 2011 ~ Feb. 2018 | 2200 [days] | 2018 PRL   |
| Aug. 2011 ~ Mar. 2023 | 3800 [days] | new result |

### Major Results from RENO & Future

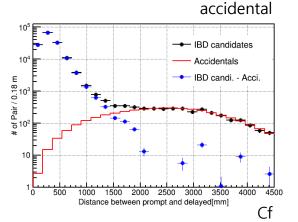
- Precise measurement of  $|\Delta m_{ee}^2|$  and  $\theta_{13}$  with n-Gd capture
  - Phys. Rev. Lett. 108, 191802 (2012) 229[d]
  - Phys. Rev. Lett. 116, 211801 (2016) 500[d]
  - Phys. Rev. D 98, 012002(2018) 500[d]
  - Phys. Rev. Lett. 121, 201801 (2018) 2200[d]
  - 3800[d] days of data -> new result
- Measurement of  $\theta_{13}$  with n-H capture
  - JHEP 04 029 (2020) 1500[d]
  - 2800[d] days of data
- reactor neutrino yield & spectrum
  - Phys. Rev. Lett. 122, 232501 (2019) 1800[d]
  - Phys. Rev. D 104, L111301 (2021) 2900[d]
- sterile neutrino search
  - Phys. Rev. Lett. 125, 191801 (2020) 2200[d]
  - Phys. Rev. D 105, L111101 (2022) 2500[d] x NEOS 180[d]

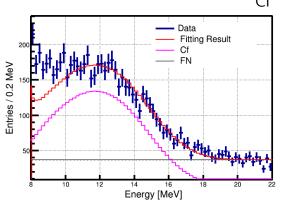
will be finished with 3800[d] analyses.

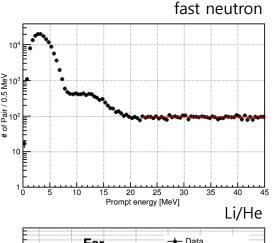
will be continued beyond 3800[d] analyses according to re-operation of the near detector.

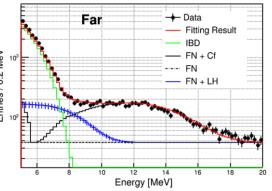
### IBD Candidate Sample & Background Estimation

• 1,211,995(144,667)  $\bar{\nu}_e$  candidate events observed for near(far).


The total background rates :

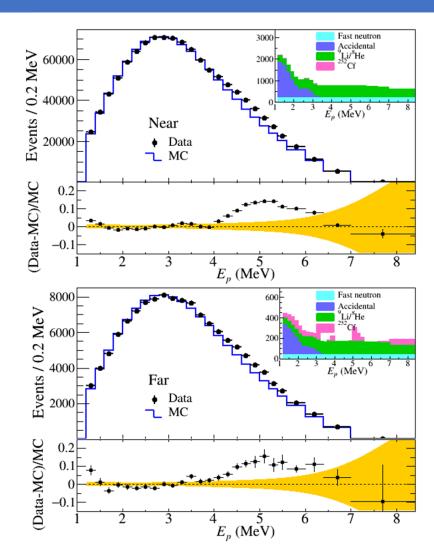

• near: 9.08±0.18 [events/day] (2.5%)


• far : 2.06±0.13 [events/day] (5.3%)


| Detector                     | Near          | Far          |
|------------------------------|---------------|--------------|
| IBD rate                     | 366.47 ± 0.33 | 38.70 ± 0.10 |
| after background subtraction | 357.39 ± 0.38 | 36.64 ± 0.16 |
| total background rate        | 9.08 ± 0.18   | 2.06 ± 0.13  |
| live time [days]             | 3307.25       | 3737.85      |

measured IBD and estimated background rates with 1.2 <  $E_p$  < 8.0 [MeV], given per day



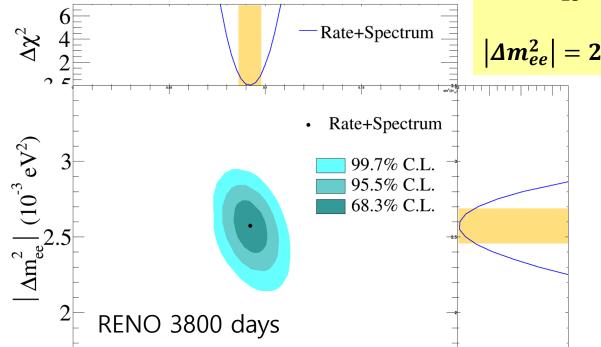







### **IBD Prompt Spectrum**

- A shape comparison between the observed IBD prompt spectrum and the prediction from a reactor  $\bar{\nu}_e$  model
  - data : observed IBD prompt spectrum after background subtraction
  - MC : prediction with best-fit oscillation
- The fractional difference between data and prediction in the lower panel
- A clear discrepancy between the observed and the predicted spectral shapes in the region of 5 [MeV]




# Results of $|\Delta m_{ee}^2|$ and $\theta_{13}$

Based on the measured far-to-near ratio of prompt spectra

from the 3800[d] sample,

0.05

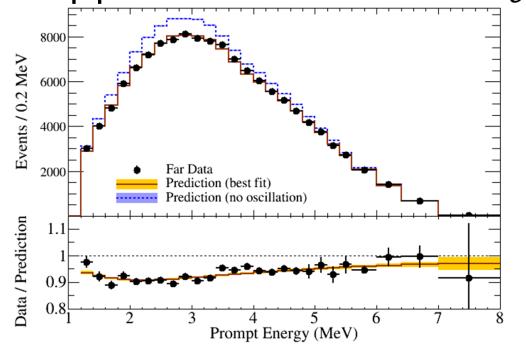


 $\sin^2 2\theta_{13}$ 

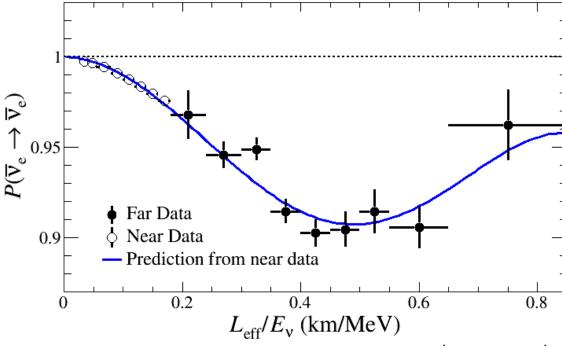
0.15

$$sin^2 2\theta_{13} = 0.0920^{+0.0044}_{-0.0042}(stat.)^{+0.0041}_{-0.0041}(syst.)$$
 (6.4% precision)

$$\left|\Delta m_{ee}^2\right| = 2.57_{-0.11}^{+0.10} (stat.)_{-0.05}^{+0.05} (syst.) \left[\times 10^{-3} eV^2\right]$$
 (4.5% precision)


source of the systematic uncertainty

|                      | $\Delta m_{ee}^2 \ [10^{-3} eV^2]$ | $sin^2 2\theta_{13}$ [] |
|----------------------|------------------------------------|-------------------------|
| reactor              | -                                  | ± 0.0013                |
| detection efficiency | -                                  | ± 0.0032                |
| energy scale         | ± 0.05                             | ± 0.0016                |
| backgrounds          | ± 0.02                             | ± 0.0020                |

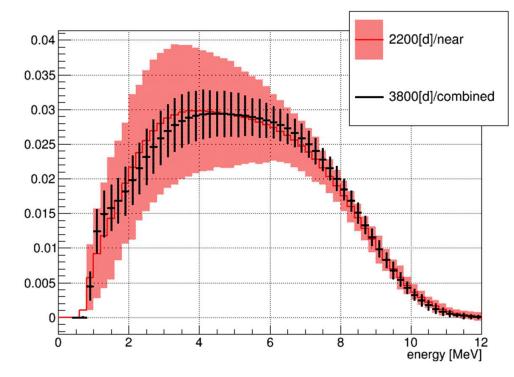

(reference) 2018 PRL 
$$sin^2 2\theta_{13} = 0.0896 \pm 0.0048 (stat.) \pm 0.0047 (syst.) \\ |\Delta m_{ee}^2| = 2.68 \pm 0.12 (stat.) \pm 0.07 (syst.) [\times 10^{-3} eV^2]$$

# Energy & L/E Dependent $\bar{v}_e$ Oscillation

Energy-dependent disappearance of reactor  $\bar{\nu}_e$ 

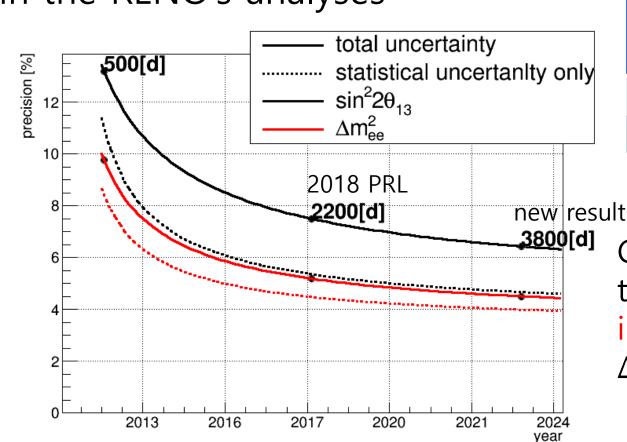


observed L/E dependent oscillation




$$P(\bar{\nu}_e \to \bar{\nu}_e) \approx 1 - \sin^2 2\theta_{13} \sin^2 \left( \Delta m_{ee}^2 \frac{L}{4E_{\nu}} \right)$$

### Improvement


- Li/He Background Spectrum
  - extension of dataset
  - combined far & near spectrum
- reactor-related uncertainties
  - decomposition of detector-correlated & detector-uncorrelated components
  - only detector-uncorrelated component can be considered for far-to-near ratio analysis.

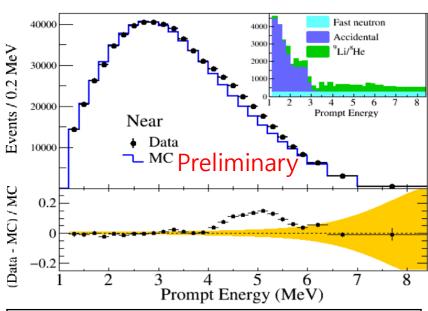
#### comparison of the Li/He spectrums



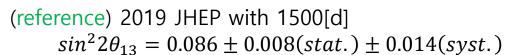
### New Result(3800[d]) vs 2018 PRL(2200[d])

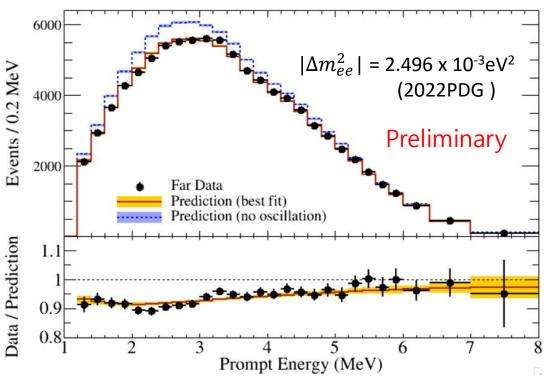
Precision of oscillation measurement in the RENO's analyses




|            | live time | precision            |                   |
|------------|-----------|----------------------|-------------------|
|            |           | $sin^2 2\theta_{13}$ | $\Delta m^2_{ee}$ |
| 2018 PRL   | 2200 [d]  | 7.5%                 | 5.2%              |
| new result | 3800 [d]  | 6.4%                 | 4.5%              |

Comparing with the 2018 PRL result, the new result gives 14% and 13% improved precision for  $sin^2 2\theta_{13}$  and  $\Delta m_{ee}^2$  each.

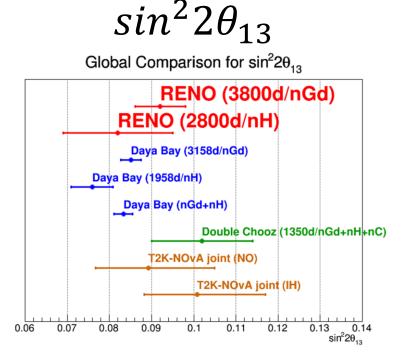

### $\theta_{13}$ Measurement with n-H capture


Based on 2800[d] n-H sample,

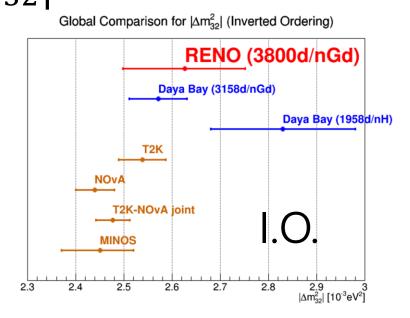
$$sin^2(2\theta_{13}) = 0.082 \pm 0.007(stat.) \pm 0.011(syst.)$$
 (15.9% precision)



|                                   | Near              | Far              |
|-----------------------------------|-------------------|------------------|
| DAQ live time (days)              | 2259.298          | 2653.297         |
| IBD candidates & backgrounds rate | $316.67 \pm 0.37$ | $61.10 \pm 0.15$ |
| After background subtraction      | $298.60 \pm 0.62$ | $35.67 \pm 0.28$ |
| Total background rate             | $18.06 \pm 0.50$  | $25.43 \pm 0.24$ |







This shows the possibility of  $\Delta m_{ee}^2$  measurement in nH analysis.

## **Global Comparison**

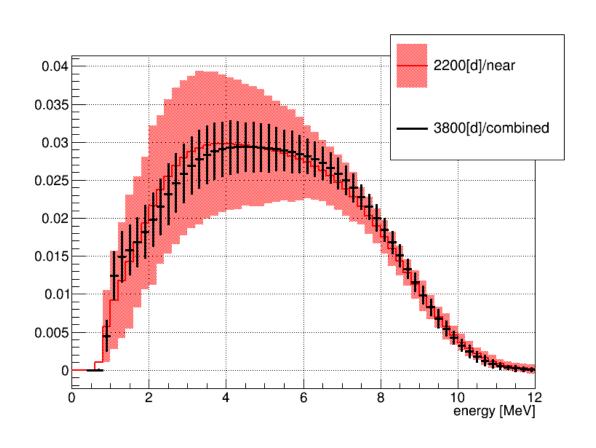
The new result shows good agreement with the global results.

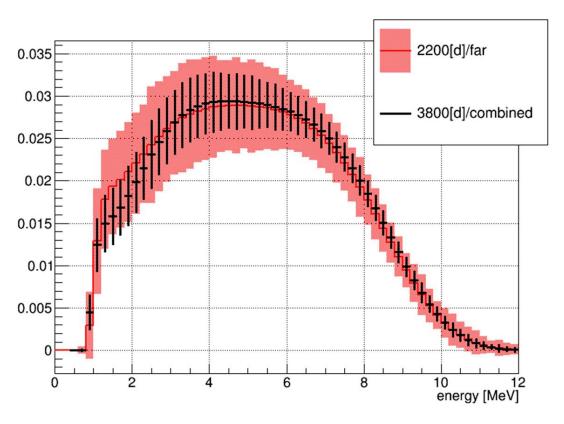






### Summary

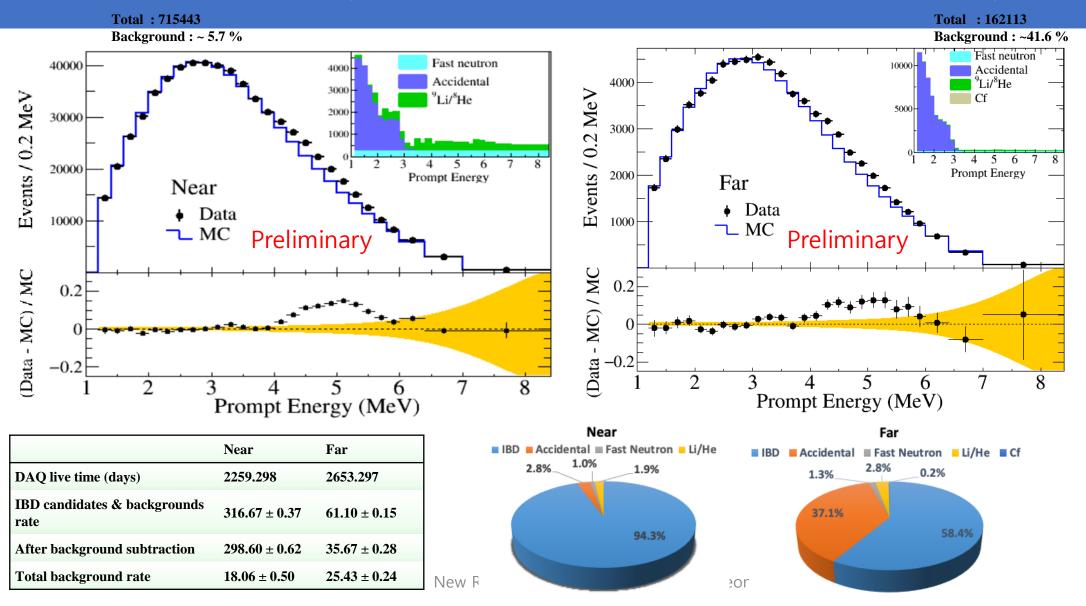

- The RENO experiment has precisely measured the amplitude and frequency of reactor  $\bar{\nu}_e$  oscillation at Hanbit Nuclear Power Plant since Aug. 2011.
- As of Mar. 2023, the RENO DAQ was shut down, and 3800[d] live time of dataset was obtained.
- From 3800[d] n-Gd sample,
  - 1,211,995(144,667) IBD candidates are observed during 3307.25(3737.85) [d] in the near(far) detector
  - the far-to-near ratio analysis gives
    - $sin^2 2\theta_{13} = 0.0920^{+0.0044}_{-0.0042}(stat.)^{+0.0041}_{-0.0041}(syst.)$  (7.5% -> 6.4% precision improved)  $\Delta m_{ee}^2 = 2.57^{+0.10}_{-0.11}(stat.)^{+0.05}_{-0.05}(syst.)[\times 10^{-3} eV^2]$  (5.2% -> 4.5% precision improved)


to be published

- In the future,
  - other analyses (n-H,  $\bar{\nu}_e$  spectrum, sterile neutrino, etc.) with the 3800[d] full data set
  - further improvements expected with a re-operating near detector.

# Backup

# Improved Li/He Background Spectrum






## Global Comparison Reference

| experiment                     | reference              |
|--------------------------------|------------------------|
| RENO (3800d/nGd)               | new result             |
| RENO (2800d/nH)                | new result             |
| Daya Bay (3158d/nGd)           | PRL 130, 161802 (2023) |
| Daya Bay (1958d/nH)            | arXiv:2406.01007       |
| Double Chooz (1350d/nGd+nH+nC) | Neutrino 2020          |
| T2K                            | EPJC 83, 782 (2023)    |
| NOvA                           | arXiv:2311.07835       |
| T2K-NOvA joint                 | Neutrino 2024          |
| MINOS                          | PRL 125, 131802 (2020) |

# Final Sample of IBD Candidates (n-H)

