Probing Gauge-Higgs Unification models at the ILC with AFB at center-of-mass energies above the Z-mass

A. Irles Quiles, J.P. Márquez Hernández, <u>A. Saibel</u>, H. Yamamoto (before at Tohoku University) AITANA group at IFIC – CSIC/UV

> R. Poeschl, F. Richard IJCLab IN2P3/CNRS

N. Yamatsu Kyoto University (before at Taiwan University)

Financiado por

NextGenerationEU

la Unión Europea

Gauge-Higgs Unification

Andrej Saibel

- 5D metric
 - Introducing the Hosotani symmetry breaking mechanism
- Models have only one parameter:
 - Hosotani angle $\theta_{\mathbf{H}}$: projection of 5D fields
 - **Prediction**:
 - Kaluza-Klein Resonances $\rightarrow Z'\,{\rm bosons}\,\,m_{Z'}>7\,{\rm TeV}$
 - Modifications of electroweak couplings
 - Deviations visible at 250 GeV CME
 - Benchmark scenario:
 - Funatsu, Hatanaka, Hosotani, Orikasa, Yamatsu GHU models

Studied Models

- **A-Models**: <u>1705.05282</u>

- **B-Models**: <u>2309.01132</u>, <u>2301.07833</u>

 $B_{1}^{\pm}: \theta_{H} = 0.10, m_{KK} = B_{2}^{\pm}: \theta_{H} = 0.07, m_{KK} = B_{3}^{\pm}: \theta_{H} = 0.05, m_{KK} =$

 $\begin{array}{l} A_1: \theta_H = 0.0917, m_{KK} = 8.81 \ \text{TeV} \rightarrow m_{Z^1} = 7.19 \ \text{TeV} \\ A_2: \theta_H = 0.0737, m_{KK} = 10.3 \ \text{TeV} \rightarrow m_{Z^1} = 8.52 \ \text{TeV} \end{array}$

$$13 \text{ TeV} \rightarrow m_{Z^1} = 10.2 \text{ TeV}$$

 $19 \text{ TeV} \rightarrow m_{Z^1} = 14.9 \text{ TeV}$
 $25 \text{ TeV} \rightarrow m_{Z^1} = 19.6 \text{ TeV}$

Assuming H2O-staged program

	ILCGigaZ	ILC250	ILC500	ILC1000	• -
$\int \mathcal{L} \left[f b^{-1} \right] \Big $	100	2000	4000	8000	
(P_{e^-} , P_{e^+})	(0.8, 0.3)	\mid (0.8,0.3)	(0.8,0.3)	\mid (0.8,0.2)	
OSP SSP[%]	40 10	45 $ $ 5	40 10	40 10	

International Linear Detector (ILD)

- Optimised for Particle Flow
- Precise tracking, vertexing, and PID

- Observable: Forward-backward asymmetry
 - Two back-to-back c- or b-jets
 - Full simulation of International Large Detector (ILD)
- <u>General Strategy</u>: •
 - Pre-selection: background suppression^{0.2}
 - **Jet-Flavor ID**
 - Double Tag: reduce flavor tag unc. ullet
 - **Jet-Charge**:
 - Double charge + data-driven correction ullet
 - Compare measurements to GHU
- Estimated stat. unc. in permille region
 - What about systematic uncertainties?

Andrej Saibel

Andrej Saibel

- ulletdependence
- K-ID or full Vtx charge for measurement
- ulletcorrectly P_{chg}
 - Apply migration correction

Andrej Saibel

7

Results: GHU vs SM Discrimination

masses

Higher

Statistical significance

$$d_{ij} = \frac{|A_{FB,i} - A_{FB,j}|}{\Delta A_{FB,j}}$$

- Assuming normally distributed uncertainties
- Multivariate Gaussian used for combination
 - No correlations between measurements assumed
- Three scenarios:
 - Current coupling precision
 - ILC250 (radiative return) precision
 - ILC Giga-Z

Andrej Saibel

GHU vs SM discrimination power (σ -level)

Z-fermion

- C: Current precision
- R: ILC250 (Rad. Ret.)

• Z: Giga-Z

More data/higher energy

Detwoon model discrimination power (- lovel)

Conclusion

- The International Linear Collider offers a clean environment for BSM searches
- International Large Detector has excellent PID and vertexing capabilities
- Presented a **benchmark BSM search** at ILC
- Expected statistical uncertainties are on permille level
- Experimental uncertainties can be minimised through data-driven methods
- Measurements can lead to observations or exclusion of physics way above the energy reach of the collider
- Discrimination between models is also achievable

BACKUP

Impact of Beam Polarisation

- Plot similar to slide 8
- **Fixing Z-fermion couplings** to ILC250 radiative return case
- Impact of 0, 30, 60% positron
 beam polarisation on the results is shown
- No polarisation is assumed for ILC250 (no pol.)

GHU vs SM discrimination power (σ -level)

B_3^+	0.4	0.4	0.4	0.6	0.7	0.9	1.1	1.3	1.3	2.3	2.5	2.8		
B_3^-	0.4	0.4	0.4	0.8	0.9	0.9	2.5	2.7	2.8	6.5	6.7	6.9		
B_2^+	0.7	0.7	0.7	1.2	1.5	1.7	1.9	2.2	2.4	4.1	4.5	4.9		
B_2^-	0.7	0.7	0.7	1.3	1.4	1.5	4.5	4.6	4.8	>10	>10	>10		< 3
B_1^+	1.6	1.6	1.6	2.6	3.2	3.7	3.8	4.4	4.9	6.4	6.8	7.4		3-4
B_1^-	1.4	1.4	1.4	2.5	2.7	2.9	9.2	9.6	9.9	>10	>10	>10		4-5
A_2	3.3	3.3	3.3	4.1	4.8	5.4	>10	>10	>10	>10	>10	>10		<i>></i>
A_1	3.9	3.9	3.9	4.5	5.0	5.5	>10	>10	>10	>10	>10	>10		
				0	30	60	0	30	60	0	30	60] e ⁺	pol.
	IL	<i>C2</i> :	50 *	IL	<i>C2</i> :	50	IL	C2	50	IL	C25	50		
	(n	ор	ol.)				+;	500)	+{	500			
										+	100	0*		

Impact of Particle Identification

- Plot similar to slide 8
- Fixing Z-fermion couplings to ILC250 radiative return case
- Charged hadron particle identification (PID) is studied
 - O: no PID
 - E: ILD baseline dE/dx PID
 - N: optimised TPC with cluster counting dN/dx
- No polarisation is assumed for ILC250 (no pol.)

GHU vs SM discrimination power (σ -level)													
B_3^+	0.3	0.4	0.4	0.5	0.7	0.7	0.9	1.2	1.3	2.1	2.5	2.5	
B_3^-	0.2	0.4	0.4	0.5	0.8	0.9	1.7	2.6	2.7	4.2	6.5	6.7	
B_2^+	0.5	0.7	0.7	0.9	1.4	1.5	1.7	2.1	2.2	3.8	4.4	4.4	
B_2^-	0.3	0.6	0.7	0.8	1.3	1.4	2.9	4.5	4.6	8.0	>10	>10	
B_1^+	1.1	1.5	1.6	2.2	3.1	3.2	3.4	4.3	4.4	5.7	6.7	6.8	
B_1^-	0.6	1.2	1.4	1.4	2.4	2.7	5.9	9.3	9.6	>10	>10	>10	
A_2	2.2	3.2	3.3	3.3	4.7	4.8	>10	>10	>10	>10	>10	>10	
A_1	2.7	3.8	3.9	3.5	4.9	5.0	>10	>10	>10	>10	>10	>10	
	0	Е	N	0	Е	N	0	Е	N	0	Е	N	
	IL	C2	50 *	IL	C2	50	ILC250			ILC250			
	(n	ор	ol.)				+:	500)	+500			
										+	100	0*	

