The 2HDM - First Attempt 000

Realistic Reduction

Centro de Física Teórica de Partículas Instituto Superior Técnico Universidade de Lisboa

Reduction of Couplings in the 2HDM

Gregory Patellis

M.A. May Pech, M. Mondragon, GP, G. Zoupanos arXiv:2310.14014 (hep-ph)

20 July 2024

Reduction of Couplings Basics

An RGI expression among couplings

$$\mathcal{F}(g_1,...,g_A)=0$$

must satisfy the pde

$$\mu \frac{\mathrm{d}\mathcal{F}}{\mathrm{d}\mu} = \sum_{\alpha=1}^{A} \beta_{\alpha} \frac{\partial\mathcal{F}}{\partial g_{\alpha}} = 0$$

Assumption: there are A - 1 independent $\mathcal{F}s$ among A couplings.

Finding them is equivalent to solve the ode

$$\beta_g \left(\frac{dg_a}{dg} \right) = \beta_a, \qquad a = 1, ..., A - 1$$

where g is considered the primary coupling.

The above equations are called reduction equations (RE).

Zimmermann (1985)

However, the general solutions of the REs have integration constants.

 \rightarrow We just traded an integration constant for each coupling \rightarrow we have not reduced the freedom of the parameter space.

 \rightarrow Assume power series solutions to the REs (which preserve perturbative renormalizability):

$$g_a = \sum_n \rho_a^{(n)} g^{2n(+1)}$$

• Examining in one-loop sufficient for uniqueness to all loops

Oehme, Sibold, Zimmermann (1984); (1985)

For some models this *complete reduction* can prove to be too restrictive \rightarrow use fewer $\mathcal{F}s$ as RGI constraints (*partial reduction*).

The 2HDM - First Attempt 000

Realistic Reduction

RoC Applications

Standard Model

- ightarrow m_t \sim 98 GeV
- $ightarrow m_h \sim 65 \, {
 m GeV}$ Kubo, Sibold, Zimmermann (1984); (1985)

Non-Supersymmetric SM Extensions

- Two Higgs Doublet Models
- Three Higgs Doublet Models
- o SM + Vector-like Quarks
- SM + Asymptotically Safe Gravity

Supersymmetric SM Extensions

- Reduced MSSM Mondragon, Tracas, Zoupanos (2014)
- Finite Unified Theories
 - Reduced Minimal N = 1 SU(5)
 - All-loop Finite N = 1 SU(5) Heinemeyer, M
 - Two-loop Finite $N = 1 SU(3)^3$

) Kubo, Mondragon, Zoupanos (1994) Heinemeyer, Mondragon, Zoupanos (2008) Ma, Mondragon, Zoupanos (2004)

Heinemeyer, Mondragon, GP, Tracas, Zoupanos (2020) Heinemeyer, Kalinowski, Kotlarski, Mondragon, GP, Tracas, Zoupanos (2021)

The 2HDM

$$\begin{split} V_{h} &= m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - \left(m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + \text{h.c.}\right) \\ &+ \frac{1}{2} \lambda_{1} \left(\Phi_{1}^{\dagger} \Phi_{1}\right)^{2} + \frac{1}{2} \lambda_{2} \left(\Phi_{2}^{\dagger} \Phi_{2}\right)^{2} + \lambda_{3} \left(\Phi_{1}^{\dagger} \Phi_{1}\right) \left(\Phi_{2}^{\dagger} \Phi_{2}\right) + \lambda_{4} \left(\Phi_{1}^{\dagger} \Phi_{2}\right) \left(\Phi_{2}^{\dagger} \Phi_{1}\right) \\ &+ \left[\frac{1}{2} \lambda_{5} \left(\Phi_{1}^{\dagger} \Phi_{2}\right)^{2} + \lambda_{6} \left(\Phi_{1}^{\dagger} \Phi_{1}\right) \left(\Phi_{1}^{\dagger} \Phi_{2}\right) + \lambda_{7} \left(\Phi_{2}^{\dagger} \Phi_{2}\right) \left(\Phi_{1}^{\dagger} \Phi_{2}\right) + \text{h.c.}\right] \end{split}$$

- \rightarrow We choose all parameters to be real
- \rightarrow We choose to work with the Type-II scenario ($u_R^i \rightarrow \Phi_2$, d_R^i , $e_R^i \rightarrow \Phi_1$):

•
$$\lambda_6 = \lambda_7$$
 to avoid tree-level FCNCs

and we need

- $\lambda_4 < 0$ to conserve the electric charge and
- $\lambda_1 > 0$, $\lambda_2 > 0$ and $\sqrt{\lambda_1 \lambda_2} + \lambda_3 + \lambda_4 |\lambda_5| > 0$ for the potential to be bounded from below.

A first Attempt

- \rightarrow Reduction on dimensionless parameters, m^2_{11}, m^2_{22} and m^2_{12} remain free, will be fixed to give m_A
- ightarrow Partial 1-loop reduction on the g_3 y_t λ_i space, g_3 is the primary coupling
- $ightarrow g_2, g_1$ switched off, will be added as corrections to the reduction process

$$\beta_3 \equiv Dg_3 = -7g_3^3$$
, $\beta_2 \equiv Dg_2 = -3g_2^3$, $\beta_1 \equiv Dg_1 = 7g_1^3$

$$\beta_t = \beta_{t_0} + \beta_{t_c} = \left(\frac{9}{2}y_t^2 - 8g_3^2\right)y_t + \left(-\frac{9}{4}g_2^2 - \frac{17}{12}g_1^2\right)y_t$$

$$\beta_{\lambda_i} = \beta_{\lambda_{i0}} + \beta_{\lambda_{ic}}$$

$$\begin{split} \beta_{\lambda_1} &= 12\lambda_1^2 + 4\lambda_3^3 + 4\lambda_3\lambda_4 + 2\lambda_4^2 + 2\lambda_5^2 + 24\lambda_6^2 + \frac{3}{4}(3g_2^4 + g_1^4 + 2g_2^2g_1^2) - 3\lambda_1(3g_2^2 + g_1^2) \\ \beta_{\lambda_2} &= 12\lambda_2^2 + 4\lambda_3^3 + 4\lambda_3\lambda_4 + 2\lambda_4^2 + 2\lambda_5^2 + 24\lambda_7^2 + 12\lambda_2\lambda_7^2 - 12\lambda_7^4 + \frac{3}{4}(3g_2^4 + g_1^4 + 2g_2^2g_1^2) - \dots \\ \beta_{\lambda_3} &= \dots \end{split}$$

where $\mathcal{D} = 16\pi^2 \mu (d/d\mu)$, $\lambda_t = y_t \sin \beta$ and y_b , y_τ are considered negligible

Reducing the parameters w.r.t. g_3 , the power series solutions are:

$$y_t = \mathbf{p}_t g_3$$
, $\lambda_i = \mathbf{p}_i g_3^2$

Substituting the solutions into the REs:

$$eta_3rac{d {f y}_t}{d {f g}_3} \ = \ eta_{t_0} \quad, \quad eta_3rac{d \lambda_i}{d {f g}_3} \ = \ eta_{\lambda_{t_0}}$$

we get sets of p_i , p_t that depend on $\sin \beta$ and are RGI.

 $ightarrow m_t \ \sim \ \sineta \ 105 \, {
m GeV}$

Switching on g_2 and g_1 , we have solutions of the form:

$$y_t = p_t g_3 + q_t g_2 + r_t g_1$$
, $\lambda_i = p_i g_3^2 + q_i g_2^2 + r_i g_1^2$

where p_t, p_i are known from the above procedure and now the full REs will be

$$\beta_3 \frac{d\mathbf{y}_t}{dg_3} = \boldsymbol{\beta}_t \quad , \quad \beta_3 \frac{d\lambda_i}{dg_3} = \boldsymbol{\beta}_{\lambda_i}$$

Solving them requires the conditions

$$\mathcal{D}(q_a g_2) \sim 0 \ , \ \mathcal{D}(r_a g_1) \sim 0 \ , \ a = t, 1, ..., 7$$

They hold for $\mu \geq 10^7~{
m GeV}$ and are not RGI ightarrow X

Realistic Approach - Reduction at a Boundary Scale

Main Idea:

- ightarrow Solve the REs at a specific scale M_{bdry}
- ightarrow Above M_{bdry} a covering theory is assumed that makes the solutions RGI
- ightarrow Use solutions as BCs to run the usual 2HDM RGEs from M_{bdry} to M_{EW}

About the boundary scale:

- Solutions wrt g_2, g_1 demand $M_{bdry} \ge 10^7$ GeV
- g_2, g_1 are treated as corrections, should not be comparable to g_3 at the boundary scale. This demands $M_{bdry} < 10^8$ GeV

 $ightarrow M_{bdry} \sim 10^7~{
m GeV}$

This is the scale that New Physics appear.

We can now reduce our system using only the following input:

 $g_i(M_{EW})$, m_A

First we focus on the g_3 - y_t reduction, as it can be performed independently from the λ_i 's and we switch off $g_{1,2}$. We find

 $y_t = 0.471g_3$

Now, switching on the two remaining gauge couplings, we solve the full REs at M_{bdry} , using their respective values $g_{1,2}(M_{bdry})$:

$$y_t = 0.471g_3 - 0.119g_2 + 1.228g_1$$

Choosing the appropriate value for tan β :

$$\tan\beta = 2.2 \pm 0.5$$

we obtain a pole top mass that satisfies the most recent experimental limits:

$$m_t = (172.69 \pm 0.30) \, \text{GeV}$$
 🗸

allowing for a 1 GeV theoretical uncertainty due to higher order contributions and the absence of y_b, y_{τ}

Now we can repeat the procedure for the full system $g_3 - y_t - \lambda_i$.

We choose $m_{11}^2, m_{22}^2, m_{12}^2$ values appropriately, in order for the CP odd Higgs scalar mass to be:

 $m_A = 800 \, \mathrm{GeV}$

Out of all the possible reduction solutions, we look for those that satisfy the light Higgs mass experimental limits:

$$m_h^{
m exp} = (125.25 \pm 0.17) \, {
m GeV}$$

where we estimate our theoretical calculations to have a 5 GeV uncertainty due to threshold corrections and higher order contributions

There are 4 viable sets of solutions

$$m_h^{(1)} = 127.28 \text{ GeV}$$
 , $m_h^{(2)} = 120.87 \text{ GeV}$
 $m_h^{(3)} = 121.20 \text{ GeV}$, $m_h^{(4)} = 122.81 \text{ GeV}$

Reduction of Couplings

Realistic Reduction

#	pt	p_1	p_2	p_3	p_4	p_5	p_6	p7
SET1	0.471	-1.377	-1.167	0	0	0	0	0
SET2	0.471	-1.377	-1.167	0	0	0	0	0
SET3	0.471	-1.109	-0.773	-0.955	0	0	0	0
SET4	0.471	-1.109	-0.773	-0.955	0	0	0	0
#	q t	q_1	q ₂	q_3	q_4	q_5	q_{6}	q 7
SET1	-0.119	4.606	4.198	-0.087	-0.060	-0.060	0	0
SET2	-0.119	4.598	4.189	0.124	-0.595	0	0	0
SET3	-0.119	3.652	2.819	3.317	0	0	0	0
SET4	-0.119	3.652	2.819	3.317	0	0	0	0
#	r _t	<i>r</i> ₁	<i>r</i> ₂	<i>r</i> ₃	<i>r</i> ₄	r 5	<i>r</i> ₆	r 7
SET1	1.228	10.022	0.498	-1.033	-3.275	0	0	0
SET2	1.228	10.197	0.240	-0.415	-1.490	-1.490	0	0
SET3	1.228	7.929	1.245	5.518	-9.425	0	0	0
SET4	1.228	-3.196	0.312	8.017	-8.394	0	0	0

Conclusions & Outlook

- Partial RoC on the Type-II 2HDM at a boundary scale M_{bdry}
- Input parameters: $g_i(M_{EW})$, m_A
- Top quark mass obtained within experimental limits
- Light Higgs boson mass obtained within experimental limits
- Prediction for $\tan \beta \sim 2.2$
- Predicted scale of New Physics: $M_{bdry} \sim 10^7 \text{ GeV}$

Next:

- 2-loop analysis
- 2HDM with complex parameters
- realistic description of spontaneous CP violation with minimal input
- natural selection of one of the six symmetries of the Higgs potential
- apply on 3HDM more predictive reduction