[Reduction of Couplings](#page-1-0) [The 2HDM - First Attempt](#page-4-0) [Realistic Reduction](#page-7-0)

Centro de Física Teórica de Partículas Instituto Superior Técnico Universidade de Lisboa

Reduction of Couplings in the 2HDM

Gregory Patellis

M.A. May Pech, M. Mondragon, GP, G. Zoupanos arXiv:2310.14014 [hep-ph]

20 July 2024

Reduction of Couplings Basics

An RGI expression among couplings

$$
\mathcal{F}(\mathcal{g}_1,...,\mathcal{g}_A)=0
$$

must satisfy the pde

$$
\mu \frac{d\mathcal{F}}{d\mu} = \sum_{\alpha=1}^{A} \beta_{\alpha} \frac{\partial \mathcal{F}}{\partial g_{\alpha}} = 0
$$

Assumption: there are $A - 1$ independent $\mathcal{F}s$ among A couplings.

Finding them is equivalent to solve the ode

$$
\beta_g\Big(\frac{\mathrm{d}g_a}{\mathrm{d}g}\Big)=\beta_a,\hspace{1cm}a=1,...,A-1
$$

where *g* is considered the *primary coupling*.

The above equations are called *reduction equations (RE)*.

Zimmermann (1985)

However, the general solutions of the REs have integration constants.

 \rightarrow We just traded an integration constant for each coupling \rightarrow we have not reduced the freedom of the parameter space.

 \rightarrow Assume power series solutions to the REs (which preserve perturbative renormalizability):

$$
g_a = \sum_n \rho_a^{(n)} g^{2n(+1)}
$$

Examining in one-loop sufficient for uniqueness to all loops

Oehme, Sibold, Zimmermann (1984); (1985)

For some models this *complete reduction* can prove to be too restrictive → use fewer F*s* as RGI constraints (*partial reduction*).

[Reduction of Couplings](#page-1-0) [The 2HDM - First Attempt](#page-4-0) [Realistic Reduction](#page-7-0)

RoC Applications

Standard Model

→ *m^t* ∼ 98 GeV

→ *m^h* ∼ 65 GeV *Kubo, Sibold, Zimmermann (1984); (1985)*

Non-Supersymmetric SM Extensions

- Two Higgs Doublet Models
- *o* Three Higgs Doublet Models
- *o* SM + Vector-like Quarks
- *o* SM + Asymptotically Safe Gravity

Supersymmetric SM Extensions

- Reduced MSSM *Mondragon, Tracas, Zoupanos (2014)*
- Finite Unified Theories
	- Reduced Minimal *N* = 1 *SU*(5) *Kubo, Mondragon, Zoupanos (1994)*
	- All-loop Finite *N* = 1 *SU*(5) *Heinemeyer, Mondragon, Zoupanos (2008)*
	- Two-loop Finite $N = 1$ $SU(3)^3$

³ *Ma, Mondragon, Zoupanos (2004)*

Heinemeyer, Mondragon, GP, Tracas, Zoupanos (2020) Heinemeyer, Kalinowski, Kotlarski, Mondragon, GP, Tracas, Zoupanos (2021)

The 2HDM

$$
\begin{aligned} V_h & = \quad m_{11}^2 \Phi_1^\dagger \Phi_1 + m_{22}^2 \Phi_2^\dagger \Phi_2 - \left(m_{12}^2 \Phi_1^\dagger \Phi_2 + h.c. \right) \\ & \quad + \frac{1}{2} \lambda_1 \Big(\Phi_1^\dagger \Phi_1 \Big)^2 + \frac{1}{2} \lambda_2 \Big(\Phi_2^\dagger \Phi_2 \Big)^2 + \lambda_3 \Big(\Phi_1^\dagger \Phi_1 \Big) \Big(\Phi_2^\dagger \Phi_2 \Big) + \lambda_4 \Big(\Phi_1^\dagger \Phi_2 \Big) \Big(\Phi_2^\dagger \Phi_1 \Big) \\ & \quad + \Bigg[\frac{1}{2} \lambda_5 \Big(\Phi_1^\dagger \Phi_2 \Big)^2 + \lambda_6 \Big(\Phi_1^\dagger \Phi_1 \Big) \Big(\Phi_1^\dagger \Phi_2 \Big) + \lambda_7 \Big(\Phi_2^\dagger \Phi_2 \Big) \Big(\Phi_1^\dagger \Phi_2 \Big) + h.c. \Bigg] \end{aligned}
$$

- \rightarrow We choose all parameters to be real
- \rightarrow We choose to work with the Type-II scenario ($u_R^i \rightarrow \Phi_2$, d_R^i , $e_R^i \rightarrow \Phi_1$): *i i i*

•
$$
\lambda_6 = \lambda_7
$$
 to avoid tree-level FCNCs

and we need

- λ_4 < 0 to conserve the electric charge and
- $\lambda_1 >$ 0, $\lambda_2 > 0$ and $\sqrt{\lambda_1 \lambda_2} + \lambda_3 + \lambda_4 |\lambda_5| > 0$ for the potential to be bounded from below.

A first Attempt

- \rightarrow Reduction on dimensionless parameters, $\,m_{11}^2$, m_{22}^2 and m_{12}^2 remain free, will be fixed to give *m^A*
- \rightarrow Partial *1-loop* reduction on the g_3 y_t λ_i space, g_3 is the primary coupling
- \rightarrow q_2 , q_1 *switched off*, will be added as corrections to the reduction process

$$
\beta_3 \equiv \mathcal{D}\mathbf{g}_3 = -7\mathbf{g}_3^3 \quad , \quad \beta_2 \equiv \mathcal{D}\mathbf{g}_2 = -3\mathbf{g}_2^3 \quad , \quad \beta_1 \equiv \mathcal{D}\mathbf{g}_1 = 7\mathbf{g}_1^3
$$

$$
\beta_t \ = \ \beta_{t_0} + \beta_{t_c} = \Big(\frac{9}{2}y_t^2 - 8g_3^2\Big)y_t + \Big(-\frac{9}{4}g_2^2 - \frac{17}{12}g_1^2\Big)y_t
$$

$$
\beta_{\lambda_i} = \beta_{\lambda_{i_0}} + \beta_{\lambda_{i_c}}
$$

 $\beta_{\lambda_1} = 12\lambda_1^2 + 4\lambda_3^3 + 4\lambda_3\lambda_4 + 2\lambda_4^2 + 2\lambda_5^2 + 24\lambda_6^2 + \frac{3}{4}$ $\frac{1}{4}(3g_2^4+g_1^4+2g_2^2g_1^2)-3\lambda_1(3g_2^2+g_1^2)$ $\beta_{\lambda_2} = 12\lambda_2^2 + 4\lambda_3^3 + 4\lambda_3\lambda_4 + 2\lambda_4^2 + 2\lambda_5^2 + 24\lambda_7^2 + 12\lambda_2\lambda_7^2 - 12\lambda_7^4 + \frac{3}{4}$ $\frac{1}{4}(3g_2^4+g_1^4+2g_2^2g_1^2)-...$ $\beta_{\lambda_2} = ...$

where $\mathcal{D}=16\pi^2\mu(\mathsf{d}/\mathsf{d}\mu)$, $\;\lambda_t=\mathsf{y}_t\sin\beta\;$ and $\;\mathsf{y}_b,\;\mathsf{y}_\tau$ are considered negligible

Reducing the parameters w.r.t. *g*3, the power series solutions are:

$$
y_t = p_t g_3 \quad , \quad \lambda_i = p_i g_3^2
$$

Substituting the solutions into the REs:

$$
\beta_3 \frac{dy_t}{dg_3} = \beta_{t_0} \quad , \quad \beta_3 \frac{d\lambda_i}{dg_3} = \beta_{\lambda_{t_0}}
$$

we get sets of $p_i,\,p_t$ that depend on $\sin\beta$ and are RGI.

 $→ m_t ∼ sin β 105 GeV$

Switching on g_2 and g_1 , we have solutions of the form:

$$
y_t = p_t g_3 + q_t g_2 + r_t g_1 , \quad \lambda_i = p_i g_3^2 + q_i g_2^2 + r_i g_1^2
$$

where *p^t* , *pⁱ* are known from the above procedure and now the full REs will be

$$
\beta_3 \frac{dy_t}{dg_3} = \beta_t \quad , \quad \beta_3 \frac{d\lambda_i}{dg_3} = \beta_{\lambda_i}
$$

Solving them requires the conditions

$$
\mathcal{D}(q_{\alpha}g_2)\sim 0\quad,\quad \mathcal{D}(r_{\alpha}g_1)\sim 0\quad,\qquad \alpha=t,1,...,7
$$

They hold for $\mu > 10^7$ GeV and are not RGI \rightarrow X

Realistic Approach - Reduction at a Boundary Scale

Main Idea:

- \rightarrow Solve the REs at a specific scale M_{bdry}
- \rightarrow Above M_{bdy} a covering theory is assumed that makes the solutions RGI
- \rightarrow Use solutions as BCs to run the usual 2HDM RGEs from $M_{bd\alpha}$ to M_{EW}

About the boundary scale:

- Solutions wrt g_2, g_1 demand $M_{bdry} \geq 10^7$ GeV
- g_2 , g_1 are treated as corrections, should not be comparable to g_3 at the boundary scale. This demands $M_{bdry} < 10^8$ GeV

 \rightarrow *M_{bdry}* \sim 10⁷ GeV

This is the scale that New Physics appear.

We can now reduce our system using only the following input:

 $g_i(M_{EW})$, m_A

First we focus on the g_3 - y_f reduction, as it can be performed independently from the λ_i 's and we switch off $g_{1,2}.$ We find

 $y_t = 0.471g_3$

Now, switching on the two remaining gauge couplings, we solve the full REs at M_{bdry} , using their respective values $g_{1,2}(M_{bdry})$:

 $y_t = 0.471g_3 - 0.119g_2 + 1.228g_1$

Choosing the appropriate value for tan β :

 $\tan \beta = 2.2 \pm 0.5$

we obtain a pole top mass that satisfies the most recent experimental limits:

$$
m_t = (172.69 \pm 0.30) \,\text{GeV}
$$

allowing for a 1 GeV theoretical uncertainty due to higher order contributions and the absence of y_b , y_τ

Now we can repeat the procedure for the full system g_3 - y_t - $\lambda_i.$

We choose $m_{11}^2, m_{22}^2, m_{12}^2$ values appropriately, in order for the CP odd Higgs scalar mass to be:

 $m_A = 800$ GeV

Out of all the possible reduction solutions, we look for those that satisfy the light Higgs mass experimental limits:

$$
\textit{m}_{\textit{h}}^{\textsf{exp}}=\left(125.25\pm0.17\right)\textsf{GeV}
$$

where we estimate our theoretical calculations to have a 5 GeV uncertainty due to threshold corrections and higher order contributions

There are 4 viable sets of solutions

$$
m_h^{(1)} = 127.28 \,\text{GeV} \quad , \quad m_h^{(2)} = 120.87 \,\text{GeV}
$$
\n
$$
m_h^{(3)} = 121.20 \,\text{GeV} \quad , \quad m_h^{(4)} = 122.81 \,\text{GeV}
$$

[Reduction of Couplings](#page-1-0) [The 2HDM - First Attempt](#page-4-0) [Realistic Reduction](#page-7-0)

Conclusions & Outlook

- Partial RoC on the Type-II 2HDM at a boundary scale *Mbdry*
- Input parameters: $g_i(M_{EW})$, m_A
- Top quark mass obtained within experimental limits
- Light Higgs boson mass obtained within experimental limits
- Prediction for tan $\beta \sim 2.2$
- Predicted scale of New Physics: *Mbdry* ∼ 10⁷ GeV

Next:

- 2-loop analysis
- *^o* 2HDM with complex parameters
- *^o* realistic description of spontaneous CP violation with minimal input
- *^o* natural selection of one of the six symmetries of the Higgs potential
- *^o* apply on *3HDM* more predictive reduction