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Large Charge ’t Hooft Limit
Ŵ Introduction

N = 4 Super Yang-Mills (SYM) theory is very useful to study
• Many observables can be determined analytically

We will consider the four-point correlator of 1/2-BPS superconformal primaries with
SU(N) gauge group

Large N ’t Hooft limit: N → ∞, with g2YMN fixed [’t Hooft, źŷ]
• Selects a specific class of conformal Feynman integrals (planar)
• Loop integrands determined up to Ŵų loops [Bourjaily, Heslop, Tran, ŴŹ]
• Evaluating the integrals may still be difficult

We will instead consider the large-charge ’t Hooft limit [Bourget, Rodriguez-Gomez, Russo, ŴŻ]
of ⟨HHO2O2⟩:
Charge∆H → ∞, with λ = ∆Hg2YM fixed, and generic N
• We will find this is determined to all loops by the ladder integrals
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Four-point correlator
ŵ Derivation

Single- and multi-trace operators:

Op(x, Y) =
1

p
YI1 · · · YIpTr

(
ΦI1(x) · · ·ΦIp(x)

)
,

Op1,··· ,pn(x, Y) =
p1 · · · pn

p
Op1(x, Y) · · · Opn(x, Y) ,

where ΦI are the Ź scalar fields, x is spacetime position, and YI is the SO(6) R-symmetry
null vector.

H is a combination of multi-trace operators (as pi ≤ N), with dimension, or charge,∆H.

⟨H(x1, Y1)H(x2, Y2)O2(x3, Y3)O2(x4, Y4)⟩ = Gfree(xi, Yi) + I(xi, Yi)TH(u, v)

We will consider TH(u, v) in the limit∆H → ∞, with λ = ∆Hg2YM fixed.
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Chiral Lagrangian insertion
ŵ Derivation

We construct the L-loop integrands by inserting chiral Lagrangians,
[Eden, Heslop, Korchemsky, Sokatchev, Ŵŵ]

⟨H(x1, Y1)H(x2, Y2)O2(x3, Y3)O2(x4, Y4)⟩|L−loop

=
(−1)L

L!

∫
d4x5 . . . d4xL+4⟨H(x1, Y1)H(x2, Y2)O2(x3, Y3)O2(x4, Y4)L(x5) . . .L(xL+4)⟩|tree .

We can therefore express TH(u, v) as

TH(u, v) =
∞∑
L=1

(
−g2YM
4π2

)L x212x
4
13x

2
14x

2
23x

4
24x

2
34

(π2)L

∫
d4x5 . . . d4xL+4

∑
α

d(α)H,N;L f
(L)
α (xi) ,

where f(L)α (xi) are f-graph functions, and d
(α)
H,N;L are their corresponding colour factors.
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Constructing the integrand
ŵ Derivation

⟨H(x1, Y1)H(x2, Y2)O2(x3, Y3)O2(x4, Y4)L(x5) . . .L(xL+4)⟩|tree :

...

...

...

...

...

...

x1 x2

x3

x4

x5

xL+4

Number of traces inH ∼ ∆H

Maximising the number of legs
from chiral Lagrangians
to the heavy operatorsmaximises the charge scaling
• The integrand has a factor

(
∆H
L

)
∼ (∆H)

L

• These integrands dominate in the limit∆H → ∞
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Constructing the integrand
ŵ Derivation

⟨H(x1, Y1)H(x2, Y2)O2(x3, Y3)O2(x4, Y4)L(x5) . . .L(xL+4)⟩|tree :

...

...

...

...

...

...

x1 x2

x3

x4

x5

xL+4

Maximise number of connecting legs

The chiral Lagrangian is given by

L = tr
{
− 1

2
FαβFαβ +

√
2λαA[ϕAB, λ

B
α]

−1

8
[ϕAB, ϕCD][ϕAB, ϕCD]

}
The four-scalar vertex will maximise the number of legs

These types of diagrams will not contribute.
(Supersymmetric non-renormalisation theorems)
[Baggio, de Boer, Papadodimas; Ŵŵ]
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Constructing the integrand
ŵ Derivation

⟨H(x1, Y1)H(x2, Y2)O2(x3, Y3)O2(x4, Y4)L(x5) . . .L(xL+4)⟩|tree :

x1 x2

x3

x4

The allowed diagrams are all associated with
a single f-graph function:

f(L)ladder(xi) =
1

2(L+2)

(x212)
L−2∏L+4

i=3 x2i,i+1x
2
1ix

2
2i

+ SL+2 .

Integrating over the internal coordinates
leads to the ladder integrals Φ(ℓ)(u, v):

x212x
4
13x

2
14x

2
23x

4
24x

2
34

(π2)L

∫
d4x5 . . . d4xL+4 f

(L)
ladder(xi) =

1

u

L∑
ℓ=0

Φ(ℓ)(u, v)Φ(L−ℓ)(u, v)
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All-loop expression
Ŷ Results

Therefore TH(u, v) is given by

TH(u, v) =
∞∑
L=1

dH,N;L
(−a)L

u

L∑
ℓ=0

Φ(ℓ)(u, v)Φ(L−ℓ)(u, v) .

a = λ
4π2 =

∆Hg2YM
4π2 , and the ladder integrals are known to all loops [Usyukina, Davydychev; żŶ].

The colour factors can be explicitly computed by contracting the colour tensors for
specific cases ofH.

The integrated correlators I2[TH(u, v)] precisely match with results from supersymmetric
localisation. [Pestun; Ŵŵ] [Binder, Chester, Pufu, Wang; Ŵż] [Paul, Perlmutter, Raj; ŵŶ] [AB, Wen, Xie; ŵŶ]
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Canonical heavy operators
Ŷ Results

”Canonical” heavy operators: dH,N;L = βcL

• e.g. SU(2),H = (O2)
p, dH,2,L = 4(12)

L [Caetano, Komatsu, Wang; ŵŶ]

• TH(u, v) can be resummed [Broadhurst, Davydychev; Ŵų]:

TH(u, v) =
β

u

( ∞∑
ℓ=0

(−c a)ℓΦ(ℓ)(u, v)

)2

− 1

 ,

• Exponential decay at strong coupling
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Conclusion and Outlook
Ŷ Results

The dynamical part of ⟨HHO2O2⟩ in the limit∆H → ∞, with λ = ∆Hg2YM fixed, is given
by the all-loop expression

TH(u, v) =
∞∑
L=1

dH,N;L
(−a)L

u

L∑
ℓ=0

Φ(ℓ)(u, v)Φ(L−ℓ)(u, v)

Future directions:
• General classification of canonical operators
• Resummation properties of generic heavy operators
• Beyond large-charge planar limit
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