

Solving a Feynman integral depending on two elliptic

curves: the 5 mass Kite family

or how to solve an integral by (almost) never integrating

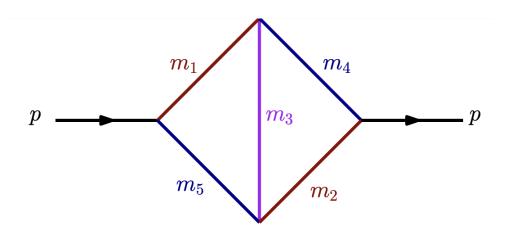
Yoann Sohnle

based on 2401.14307 with Mathieu Giroux, Andrzej Pokraka and Franziska Porkert

Feynman Integrals (FI)

- Applications: Perturbative expansion of QCD, Black Hole Scattering, EFT of Large Scale-Structures...
- Most solved **FI**s evaluate to **multiple polylogarithms** (**MPLs**),

 From 2-loops this is isn't enough [Bloch, Vanhove, 1309.5865]



- Most general 2-point, 2-loop **FI**
- Dependent on elliptic MPLs
- Mixes two different elliptic curves
- The first **elliptic FI** involving > 3 scales

Differential Equations [Kotikov, 1991]

• State of the art is to set up a set of **MIs** and find an associated Deq:

$$d\mathbf{MIs} = \mathcal{A}(D, p^2, m_i^2, dp^2, dm_i^2) \mathbf{MIs}; D = 2 - 2\epsilon$$

• We try to find the "canonical form" to this equation through the gauge transformation $\mathbf{U} \cdot \mathbf{MIs} := \mathbf{J} \text{ s.t. [Henn, 1304.1806]}$:

$$d\mathbf{J} = \epsilon \underbrace{\tilde{\mathcal{A}}(p^2, m_i^2, dp^2, dm_i^2)}_{\epsilon \text{ independent}} \mathbf{J} \rightarrow \mathbf{J} = \mathbb{P} \exp \left[\epsilon \int_{\gamma} \tilde{\mathcal{A}}\right] \mathbf{J}_0$$

• U will depend on the Periods of **both** elliptic curves:

$$\psi_1(p^2, m_1, m_2, m_3) \propto \int dx ((x - r_1)(x - r_2)(x - r_3)(x - r_4))^{-1/2}$$

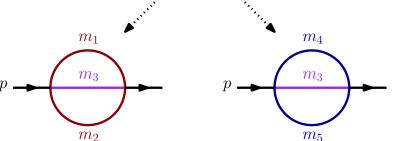
 $\psi_1(p^2, m_3, m_4, m_5) \propto \int dx ((x - q_1)(x - q_2)(x - q_3)(x - q_4))^{-1/2}$

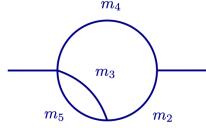
The Kite integral family

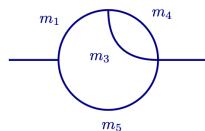
• The Kite integral family has **30 Master Integrals**, most notably:

$$\mathbf{MIs} = \left(\underbrace{\dots, I_{11100}, I_{21100}, I_{12100}, I_{11200}, I_{00111}, I_{00211}, I_{00121}, I_{00112},}_{\text{existing results [Bogner, Müller-Stach, Weinzierl, 1907.01251]}} \underbrace{I_{11110}, I_{11101}, I_{01111}, I_{10111}, I_{11111}}_{\text{our results}} \right)$$

$$p = \underbrace{\prod_{m_1, \dots, m_4} m_4}_{m_3} \underbrace{\prod_{m_2, \dots, m_4} m_4}_{m_4} \underbrace{\prod_{m_3, \dots, m_4} m_4}_{m_4} \underbrace{\prod_{m_4, \dots, m_4}$$







The Kite integral family

• The differential equation organises into **blocks** 1 :

	I_{11100}		$\int \mathcal{A}_{1,1}$	$\mathcal{A}_{1,2}$	$\mathcal{A}_{1,3}$	$\mathcal{A}_{1,4}$	0	0	0	0	0	0	I_{11100}
d	I_{21100}		$\mathcal{A}_{2,1}$	$\mathcal{A}_{2,2}$	$\mathcal{A}_{2,3}$	$\mathcal{A}_{2,4}$	0	0	0	0	0	0	I_{21100}
	I_{12100}		$\mathcal{A}_{3,1}$	$\mathcal{A}_{3,2}$	$\mathcal{A}_{3,3}$	$\mathcal{A}_{3,4}$	0	0	0	0	0	0	I_{12100}
	I_{11200}		$\mathcal{A}_{4,1}$	$\mathcal{A}_{4,2}$	$\mathcal{A}_{4,3}$	$\mathcal{A}_{4,4}$	0	0	0	0	0	0	I_{11200}
	I_{00111}		0	0	0	0	$\mathcal{A}_{5,5}$	$\mathcal{A}_{5,6}$	$\mathcal{A}_{5,7}$	$\mathcal{A}_{5,8}$	0	0	I_{00111}
	I_{00211}		0	0	0	0	$\mathcal{A}_{6,5}$	$\mathcal{A}_{6,6}$	$\mathcal{A}_{6,7}$	$\mathcal{A}_{6,8}$	0	0	I_{00211}
	I_{00121}		0	0	0	0	$\mathcal{A}_{7,5}$	$\mathcal{A}_{7,6}$	$\mathcal{A}_{7,7}$	$\mathcal{A}_{7,8}$	0	0	I_{00121}
	I_{00112}		0	0	0	0	$\mathcal{A}_{8,5}$	$\mathcal{A}_{8,6}$	$\mathcal{A}_{8,7}$	$\mathcal{A}_{8,8}$	0	0	I_{00112}
	I_{11110}		$\mathcal{A}_{9,1}$	$\mathcal{A}_{9,2}$	$\mathcal{A}_{9,3}$	$\mathcal{A}_{9,4}$	0	0	0	0	$\mathcal{A}_{9,9}$	0	I_{11110}
	$igl\langle I_{11111}igr angle$		$\mathcal{A}_{10,1}$	$\mathcal{A}_{10,2}$	$\mathcal{A}_{10,3}$	$\mathcal{A}_{10,4}$	$\mathcal{A}_{10,5}$	$\mathcal{A}_{10,6}$	$\mathcal{A}_{10,7}$	$A_{10,8}$	$\mathcal{A}_{10,9}$	$\mathcal{A}_{10,10}$	I_{11111}

¹we only display some of the sectors

The Eyeball integral family

Ansatz: d
$$\underbrace{\left(\frac{I_{11110}}{I_{11110}^{(0)}} + F\tilde{I}_{11100}\right)}_{\text{new master Integral }\tilde{I}_{1110}} = \epsilon \left(\dots\right)$$

• where $I_{11110}^{(0)}$ is the **Maximal Cut**, determining F is the actual challenge and requires the definition of the **Moduli space**:

$$(p^2, m_1^2, m_2^2, m_3^2, m_4^2, m_5^2) \rightarrow (\underline{\tau, z_1, z_2, z_3}, \underline{z_4, z_5})$$
known result new method!

• with a **Jacobian**:

$$\begin{pmatrix} d\tau \\ d\vec{z} \end{pmatrix} = \begin{pmatrix} \frac{\partial \tau}{\partial p^2} & \frac{\partial \tau}{\partial \vec{m}^2} \\ \frac{\partial \vec{z}}{\partial p^2} & \frac{\partial \vec{z}}{\partial \vec{m}^2} \end{pmatrix} \begin{pmatrix} dp^2 \\ d\vec{m}^2 \end{pmatrix}$$

The Eyeball integral family

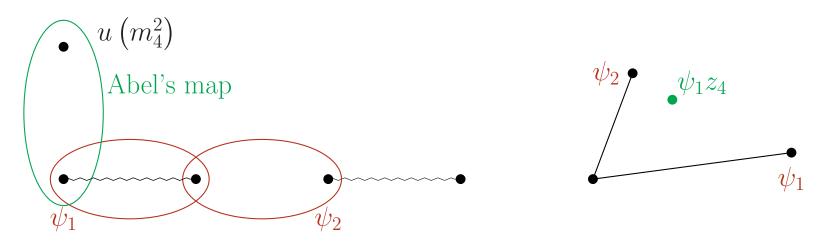
• F can be shown to be expressed as (with $f^{(...)}$ some rational function):

$$F = \left(f^{(m_1^2)} \frac{\partial m_1^2}{\partial \tau} + f^{(m_2^2)} \frac{\partial m_2^2}{\partial \tau} + f^{(p^2)} \frac{\partial p^2}{\partial \tau} + f^{(m_4^2)} \frac{\partial m_4^2}{\partial \tau} \right) \psi_1 \frac{\partial \tau}{\partial p^2}$$

• We should find how m_4 maps to the torus! We find a natural candidate:

$$\int_0^{m_4^2} dm_4^{\prime 2} I_{11110}^{(0)} = \int_0^{m_4^2} \frac{dm_4^{\prime 2}}{\sqrt{P_4(m_4^{\prime 2})}} = \psi_1 z_4$$

• This turns out to be **Abel's map** (inverse of $\wp(z)$) for our torus!



The Kite integral family

• The **Kite** integral follows the following differential equation:

$$dI_{11111} = \mathcal{A}_{10,10}^{(0)} I_{11111} + \mathcal{A}_{10,1}^{(0)} \tilde{I}_{11100} + \mathcal{A}_{10,4}^{(0)} \tilde{I}_{00111} + \epsilon(\dots)$$

• Analogously to the **Eyeballs**, make the ansatz:

$$d\underbrace{\left(\frac{I_{11111}}{I_{11111}^{(0)}} + F_1\tilde{I}_{11100} + F_2\tilde{I}_{00111}\right)}_{\text{new master Integral }\tilde{I}_{11111}} = \epsilon (\dots)$$

• F_1 and F_2 can be determine as before since we can compute $\frac{\partial m_4^2}{\partial \sigma^{(11100)}}$,

$$\frac{\partial m_5^2}{\partial \tau^{(11100)}}$$
, $\frac{\partial m_4^2}{\partial \tau^{(00111)}}$ and $\frac{\partial m_5^2}{\partial \tau^{(00111)}}$

The solution

• The **Kite** integral family follows the following **canonical** differential equation:

$$d\begin{pmatrix} \vdots \\ \tilde{I}_{11111} \end{pmatrix} = \epsilon \tilde{\mathcal{A}} \begin{pmatrix} \vdots \\ \tilde{I}_{11111} \end{pmatrix}$$

• The entries of $\tilde{\mathcal{A}}$ are either **rational functions** with simple poles or "**elliptic**" functions $g^{(\alpha)}(\sum_i a_i z_i, \tau)$ on **either** torus with simple poles which are related to θ -functions through:

$$\sum_{\alpha=0}^{\infty} \eta^{\alpha-1} g^{(\alpha)}(z,\tau) = \pi \frac{\theta'_1(0,\tau)\theta_1(\pi(z+\eta),\tau)}{\theta_1(\pi z,\tau)\theta_1(\pi\eta,\tau)}$$

Conclusion and Outlook

- Opens the door to study more **multi-scale FIs** beyond **MPLs**
- Understanding how to find **Moduli space** $\mathcal{M}_{1,5}$ is **crucial**
- Structure of differential equation **never mixes elliptic curves**, what would happen for **FIs** in which they do? [Müller, Weinzierl, 2205.04818]
- Characterising the **Moduli** of more complicated geometries is an open problem!

Thank you for your attention!