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Feynman Integrals (FT)

e Applications: Perturbative expansion of QCD, Black Hole

Scattering, EFT of Large Scale-Structures...

e Most solved FIs evaluate to multiple polylogarithms (MPLs),

From 2-loops this is isn’t enough [Bloch, Vanhove, 1309.5865]

e Most general 2-point, 2-loop FI
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e Dependent on elliptic MPLs

e Mixes two different elliptic curves

e The first elliptic FI involving > 3 scales



Differential Equations [Kotikov, 1991]

e State of the art is to set up a set of MIs and find an associated Deq:

dMIs = A(D,pQ, mg, dp. dmzz) Mls: D =2—2¢

e We try to find the “canonical form” to this equation through the

cgauge transformation U - MIs := J s.t. [Henn, 1304.1806]:

dJ = eizl(pQ,mg,dpQ,dmglJ — J=Pexp e/
~ y

e independent -

e U will depend on the Periods of both elliptic curves:
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The Kite integral family

e The Kite integral family has 30 Master Integrals, most notably:

Mls = | ..., 11100, 121100, 112100, 1112005 {00111, 100211, {00121, {00112
existing results [Bogner, Miiller-Stach, Weinzierl, 1907.01251]
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The Kite integral family

e The differential equation organises into blocks!:
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(A Ao Ay A 0 0 0 0 0 0 )
Aoy Mgy Ass Aoy O 0 0 0 0 0
As Ass Ass Asy 0 0 0 0 0 0
Ayl Agp Ay Ay 00 0 0 0 0
0 0 0 0 A Asg Ass Ass 00
0 0 0 0 A5 Ass A7 Ags 0 0
0 0 0 0 A Arg A7 Ar;s 00
0 0 0 0 Ass Asg As7 Aggs 00

Ag1 Ago Ag3z Agy 0 0 0 0 Agg 0
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1we only display some of the sectors
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The Eyeball integral family
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I11110

Ansatz: d
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new master Integral /1119

e where / 1(?)110 is the Maximal Cut, determining F' is the actual chal-

lenge and requires the definition of the Moduli space:
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known result new method!

e with a Jacobian:
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The Eyeball integral family

e I’ can be shown to be expressed as (with #4+) some rational function):

= <f<m1>aa”j1 b By pO o am‘*) s

e We should find how m4 maps to the torus! We find a natural candidate:
/2

m
/2 1
11110 = =124

e This turns out to be Abel’s map (mverse of p(z)) for our torus!
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Abel’s map




The Kite integral family

e The Kite integral follows the following differential equation:

0 0) - 0) =+
dl11111 = Ago%mhnn + Aio)’llmoo + Ago%ﬂoom +e(...)

e Analogously to the Eyeballs, make the ansatz:

I : s
d | =5+ Fulinoo + Paloorn | =€)
< [11111 P
new master Integral I 11111
. . 0mi
e ['1 and F5 can be determine as before since we can compute ,
5--(11100)
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The solution

e The Kite integral family follows the following canonical differential
equation:

d —eA
I I

e The entries of A are either rational functions with simple poles or
“elliptic” functions g\ (>_;aiz, T) on either torus with simple

poles which are related to f-functions through:

i a—1 (a)(z ) = 7T(91<0,7')(91<7T(Z +n),T)
a=0 v o O1(mz, 7)01(mn, T)



Conclusion and Outlook

e Opens the door to study more multi-scale FIs beyond MPLs
e Understanding how to find Moduli space Mj 5 is crucial

e Structure of differential equation never mixes elliptic curves, what

would happen for FIs in which they do? [Miiller, Weinzierl, 2205.04818]

e Characterising the Moduli of more complicated geometries is an open

problem!

Thank you for your attention !




