Constraints on neutrino self-interactions by Multi-Messengers

Maria Petropavlova Andreas Trautner Adam Smetana

Kernphysik

 . Max-Planck-Institut für Institute of Experimental and Applied **PHYSICS** Czech Technical University in Prague

Charles University

Institute of Experimental and ApplieD Physics Czech Technical University in Prague

WHAT IS SO INTERESTING ABOUT NSI?

Neutrino Self interactions - motivation

What allows us to consider NSI?

- ❖ CMB and LSS leave a room to the impact of NSI
- ❖ Abundance of early elements indicates that neutrinos significantly influenced the era of Big Bang nucleosynthesis
- ❖ NSI could alter the typical free-streaming behavior of neutrinos during the radiation-dominated period after their weak decoupling

Why we are interested in NSI?

- \bigstar NSI potentially can resolve modern cosmology tensions in measurements of today's Hubble rate $\mathcal{H}_{{}_{\!\scriptscriptstyle\mathcal{O}}}$ and the matter power spectrum $\mathbf{\sigma}_{_{\mathcal{S}}}$,
- \bigstar potentially can explain anomalies between different neutrino oscillation experiments

CMB - Cosmic microwave background LSS - large-scale structures

OKAY, SO HOW DO YOU INTRODUCE NSI?

Neutrino Self interactions

$$
\mathscr{L}=g_{ij}\overline{v}_i\gamma_\mu v_j\phi^\mu, \ (i,j=e,\mu,\tau)
$$

Framework: Dirac neutrinos interacting with a massive spin-one boson p^μ through a vector coupling . Vector boson coupling to other particles is effectively negligible. The mediator mass M and coupling strength g, are free parameters.

> In the scenario of minimal coupling, neutrinos may couple to a massive scalar, pseudoscalar, **vector**, or axial-vector particle.

But how do we measure such interactions?

Measurements

★ **Cosmological constraints** ○ Big Bang Nucleosynthesis (BBN) and Cosmic Microwave Background (CMB) ★ **Laboratory bounds** come from searches for ○ neutrinoless double beta decay ○ rare meson, τ and $Z \rightarrow VVV$ \bar{V} \bar{V} decays;

Neutrino Self-Interactions: A White Paper - J. M. Berryman et all, 2022

high energy extraterrestrial neutrinos Scattering on Cosmic Neutrino Background (CNB)

❖ Interactions of the astrophysical neutrinos with the cosmic neutrino background

HEV must travel tremendous distances from the source to the detector on Earth. And if we assume NSI, instead of free-streaming, these HEV may scatter on the abundant CNB, which consists of relic neutrinos with very low effective temperature. Thus such a scattering will ensure a visible energy loss, and will remove the HE neutrino from the initial flux. This is the way how the observation of astrophysical neutrinos can be used to constrain NSI.

❖ Average CNB density n_v = 112 cm⁻³ per flavour n_v^{\dagger} ~ 340 cm⁻³ total Blazar: $\mathcal{E}_{\beta} \in (TeV - PeV)$ Supernova: \mathcal{E}_{ζ} Supernova: ϵ_{c} ~ 10 M eV . ❖ Incoming neutrino energy of electron antineutrino flux $D = 1, 3$ Gpc $D = 55 + 15$ kpc $T^{\rm eff}_{\ \ \rm CnB}$ = 1.7 10⁻⁴ eV

Supernova 1987 NGC 1068:

 \mathcal{E}_{ς} ~ 10 M eV.

 $D = 55+15$ kpc

 $E \in (1-10)$ TeV $D = 13$ Mpc

E ∼ 290 TeV $D > 1,3$ Gpc

Detected by IceCube and Baikal-GVD

TXS 0506+056.

 $E = 171$ TeV

$$
\lambda^{-1} = \int \frac{d\mathbf{p}_X}{(2\pi)^3} f(\mathbf{p}_X) \ v_{Moller} \ \sigma(s)
$$

- inverse interaction rate

The detection of neutrinos from a HEV source requires that t**he mean free path of neutrinos through the CB is comparable to or greater than the distance to the source**. So we set this condition to the mean free path to experience at least one interaction

 $D\lambda^{-1} < 1$

where D is the distance to the source.

This results in limits to the coupling of neutrinos with themselves and with other particles.

 $v_{Moller} = \frac{|\mathbf{v}_X - \mathbf{v}_\nu|}{|v|}$

 $g \leq \left(\frac{\lambda|_{g\to 1}}{D}\right)^{1/4}$

Constraints on NSI coupling constant from SN and B, AGN

Non-relativistic constraints on coupling constant from SN & B & AGN

 $g\leq \left(\frac{\lambda|_{g\rightarrow 1}}{D}\right)^{1/4}$

Ultra-relativistic constraints on coupling constant from SN & B & AGN

 $Log[g]$

 $-$ SN₁₉₈₇

UR+NR constraints on coupling constant

 $Log[g]$

Non-relativistic constraints on coupling constant from SN & B: Neutrino mass dependence

я

No angle cut-off for scattering to 0 and π

NR + UR coupling constant for Blazar

In the region of the small mediator mass, the topic of angle cut-off in the literature is ignored and usually excluded, though the parameter is arbitrary. More accurate approach excludes this region.

In this, work we investigated a particular model of NSI with **Dirac neutrinos** and massive vector boson as NSI mediator

We obtained

- \bigstar Analytical formula for UR (and NR) CnB with full mass dependence
- \bigstar Constraints on NSI coupling constant by HE neutrinos propagating through the CnB, from SN, Blazars and AGn neutrinos scattering on NR and UR CnB

The results are in consistency with the literature, and offer

❖ **more precise analysis on the angle cut-off parameter** for the given model, and include

❖ **intermediate mass region of the NSI mediator** to the constraints on coupling constant.

Thank you for attention!

New neutrino interactions in laboratory

(neutrino self-interactions, model building, coherent scattering, short-baseline anomalies, reactor anomalies)

- **New neutrino interactions in Cosmology** (cosmological tensions, leptogenesis, CNB detectability)
- **New neutrino interactions in Astrophysics** (supernovae, diffuse supernovae fluxes, (U)HE cosmic rays, refractive effects from NSI, DM self-interactions via neutrino exchange)

Literature

[1] Looking for cosmic neutrino background - C. Yanagisawa [2] Massive Fermi Gas in the Expanding Universe - A. Trautner [3] Multimessenger Astronomy and New Neutrino Physics - K. J. Kelly, P. A. N. Machado, [4] Neutrino Self-Interactions: A White Paper - J. M. Berryman et all, 2022 [5] The origin of high-energy astrophysical neutrinos: new results and prospects - Sergey Troitsky [6] Neutrino Echoes from Multimessenger Transient Sources - K. Murase Ian M. Shoemaker

Assumptions

- ❖ **Mediator mass:** Full dependence over the relevant interval without splitting into the limits
- ❖ **Background regime**: both NR and UR
- ❖ We average over angle between incident neutrino and background neutrino
- ❖ We adopt CνB-spectrum with temperature 10−4 eV, however for calculations, we reduce it to the Maxwell-Boltzmann distribution.
- $\mathbf{\hat{P}}$ Angle cut-off : s ($|-e$) < t < es
- ❖ We assume e − µ − τ universality in the non-standard ν − ν interaction

Backup Slides

CROSS-SECTION VS. MEDIATOR MASS, LOG

Angle cut-off

Angle cut-off for scattering to 0 and π. This corresponds to the t-channel exchange of a massless v. It occurs whenever the final X carries off all of the initial neutrino energy. In the opposite limit, t ~0, the neutrino retains all of its incident energy, and is not removed from the "detectable" flux. The relevant factor is not the total cross section, but the cross section which describes the transport of energy of the incident neutrino by scattering with low-energy particles. This requires a significant energy loss by the initial neutrino, some substantial fraction of s. We can calculate the relevant fraction of the total cross section by taking the limits of integration to be $-s(l-e)_t < -e_s$

PROCESSES CONTRIBUTING TO THE HE**E** sCATTERING ON C**PB** $t+s$ channel: $t+u$ channel: $\nu(p)$ $\nu(p')$ $\nu(p')$ $\nu(p')$ $\nu(p')$ $\nu(p)$ $\nu(p)$ $\nu(p)$ ww q q^{\prime} $\nu(k)$ $\nu(k')$ $\nu(k')$ $\nu(k)$ $\overline{\nu}(k')$ $\overline{\nu}(k)$ $\overline{\nu}(k)$ $\overline{\nu}(k')$ $\sigma s/g^4$ $(d\sigma/dt)(8\pi s^2/g^4)$ Process Channel

Asymptotic limits

Heavy massive mediator limit **Austice Constants Constants and Massless mediator limit**

$$
\sigma(s)=g^4\,\frac{as}{M^4}
$$

$$
\sigma(s)=g^4\ \frac{a}{s}
$$

$$
d\sigma = d\sigma_{4\nu} + d\sigma_{2\nu} + 2d\sigma_{\overline{\nu}\nu} + 4d\sigma_{\overline{\nu}_i\nu_i}
$$

Blazar with uncertain distance

