

Centro de Astropartículas y Física de Altas Energías Universidad Zaragoza

Production, Purification and Assay of Underground Argon for DarkSide-20k

Devidutta Gahan

(University of Cagliari/INFN-Cagliari)

On behalf of the GADMC & DarkSide-20k Collaboration

rague,Czech Republic.

Overview:

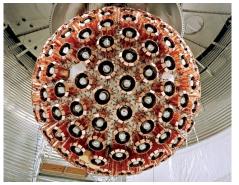
- GADMC and DarkSide Program.
- DarkSide-20k and Sensitivity
- Need for UAr and Procurement Chain.
- Urania: The Extraction Plant
- Aria: The Purification Plant
- DArTinArDM: Assaying the UAr
- Conclusion and Forward

Daria Santone's Talk on 18th about

'Direct Dark Matter Search in the DarkSide-20k Experiment'

Other contributions from DarkSide.

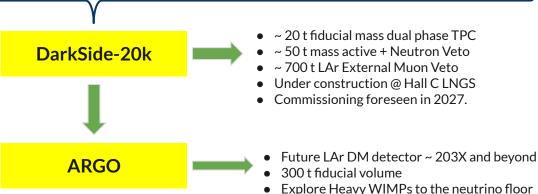
Paolo Franchini's Poster on 18th about


'DarkSide-20k Veto SiPM Detectors: Construction and Characterisation'

Yi Wang's Talk on 18th about

'Exploring Low-Mass Dark Matter with the DarkSide Detectors'

Global Argon Dark Matter Collaboration (GADMC):


MiniCLEAN @ SNOLAB

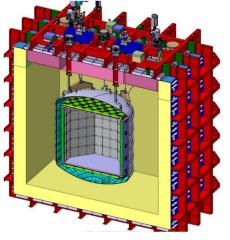
ArDM @ Canfranc

GADMC:

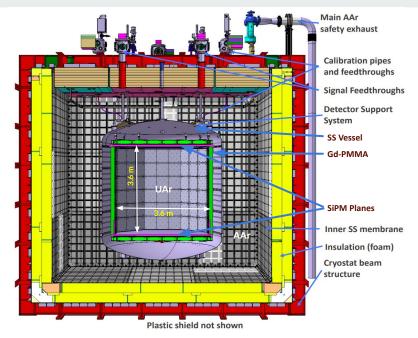
We are ~ 100 institutions and > 400collaborators from all the above experiments sharing knowledge and experience for the next step of direct DM search with LAr.

DarkSide Program

- Direct detection of WIMP dark matter signal in form of Nuclear Recoils (NRs).
- Based on a two-phase argon time projection chamber (TPC)


• Design philosophy based on having very low background levels that can be further reduced through active suppression, for **background-free** operation from both neutrons and β/γ 's

DarkSide-10T. Alexander et al., Astropart.
Phys. 49 (2013) 44
[arXiv:1204.6218]



DarkSide-50
P. Agnes et al., Phys. Rev. D 93
(2016) 081101
[arXiv:1410.0653]

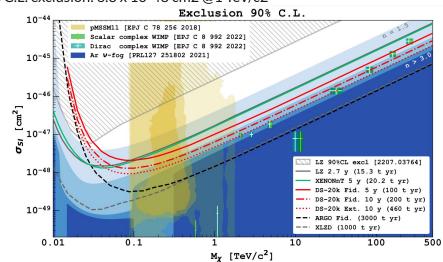
DarkSide-20k
C. E. Aalseth et al., Eur. Phys. J.
Plus (2018) 133: 131
[arXiv:1707.08145]

DarkSide-20k Detector and Sensitivity:

Nested detectors structure:

- ProtoDUNE-like cryostat (12x12x12 m³ external)
- ~ 650 tonnes LAAr cryostat as muon veto.
- SS vessel separating AAr from underground UAr.
- Integrated neutron and y veto (Gd-PMMA)
- ~5-10 cm plastic shielding around SS vessel, moderation of neutrons from cryostat insulation, LNGS Hall C (not in the drawing)

Inner Detector:


- Octagonal shape dual phase argon TPC;
- Active UAr mass ~ 49.7 tonnes;
- Fiducial UAr mass ~ 20.2 tonnes;
- Inner Neutron veto ⇒ Active UAr mass ~32 tonnes.

Instrumental Background:

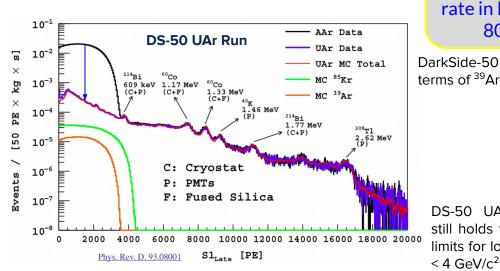
- 0.1 background events over 200 t-y in the ROI.
- Sensitivity to neutrino induced coherent scattering (CEvNS): 3.3 events

Exposure 200 t-y:

- 20 t fiducial volume with nominal 10 year run time
- 5 σ discovery: 2.1 x 10-47 cm2 @1 TeV/c2
- 90% C.L. exclusion: 6.3 x 10-48 cm2 @1 TeV/c2

Underground Argon: A Necessity

The primary problem of atmospheric Argon is the isotope ³⁹Ar, forming the internal background.


³⁹Ar ⇒ a beta emitter

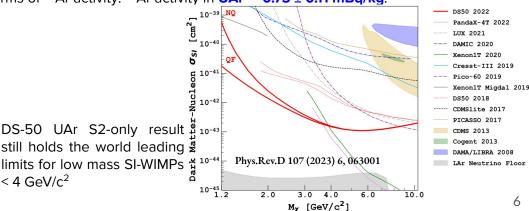
Primary Production ⇒ By spallation of cosmic rays on ⁴⁰Ar

Q_{value} = 565 keV Sp. Activity = 1 Bq/kg Half-life = 269 years

In a detector of ~50 tonnes
Trigger rate ⇒ 50 kHz

Argon stored underground is depleted in ³⁹Ar. Hence becomes our choice for target material.

Expected electron type background rate in DS-20k ~ 80 Hz

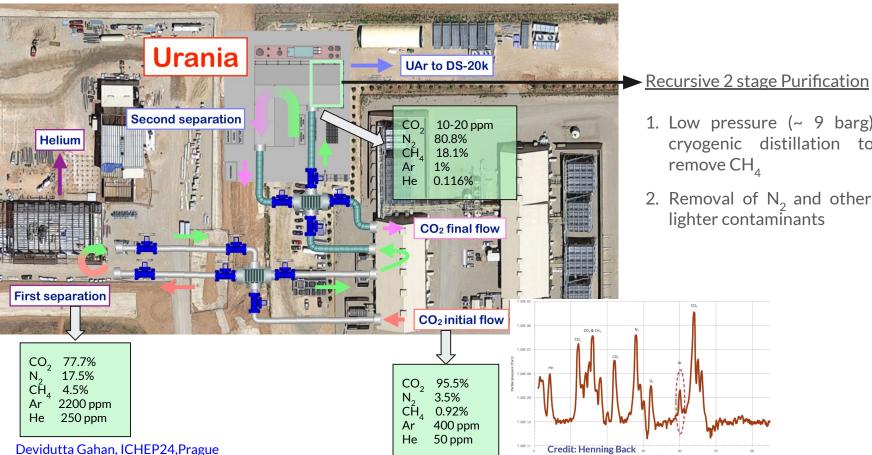

High trigger rate leading to pile up problem of ERsLow performance of the PSD variable at lower energies

Low performance of the PSD variable at lower energing.
 Poses a major problem for S2 only analysis.

Leading background for low-mass searches with dual

phase TPCs.

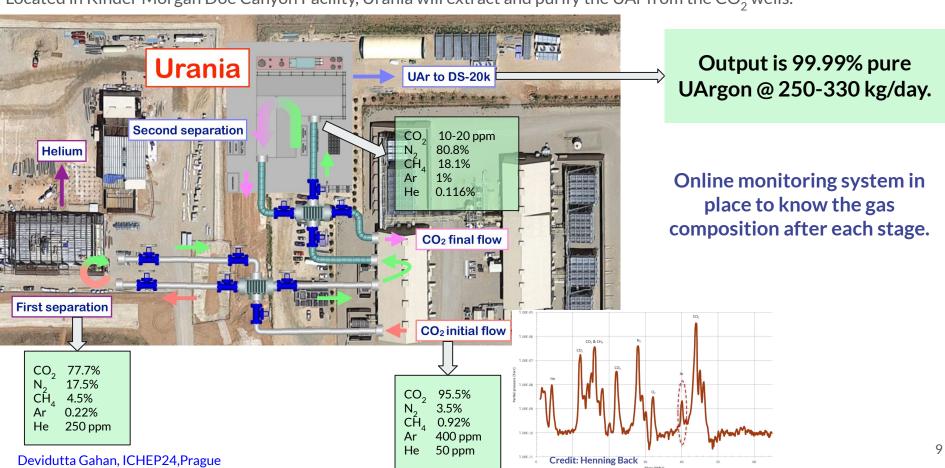
DarkSide-50 measured a depletion factor of 1400 in UAr with respect to AAr in terms of 39 Ar activity: 39 Ar activity in UAr = 0.73 ± 0.11 mBq/kg.


Devidutta Gahan, ICHEP24, Prague

UAr Procurement Chain:

Urania Project

Located in Kinder Morgan Doe Canyon Facility, Urania will extract and purify the UAr from the CO₂ wells.



1. Low pressure (~ 9 barg) cryogenic distillation to

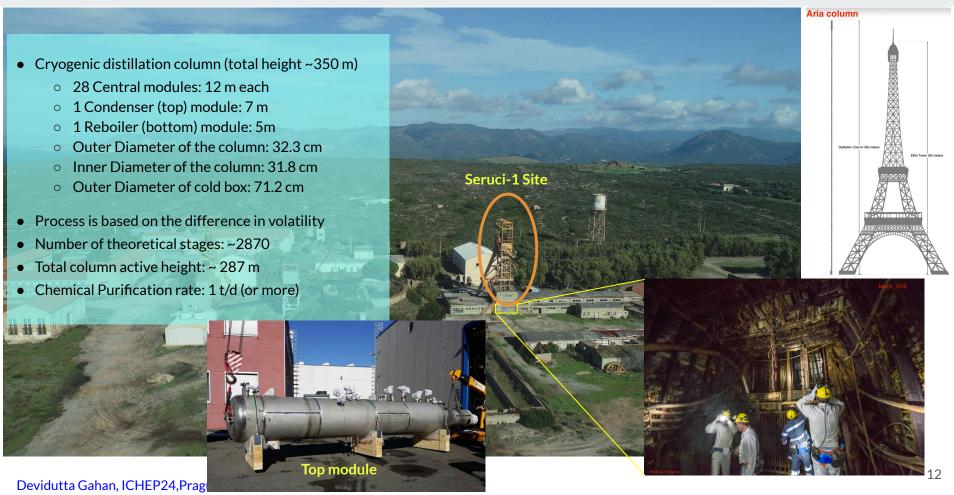
Urania Project

Located in Kinder Morgan Doe Canyon Facility, Urania will extract and purify the UAr from the CO₂ wells.

Urania Project

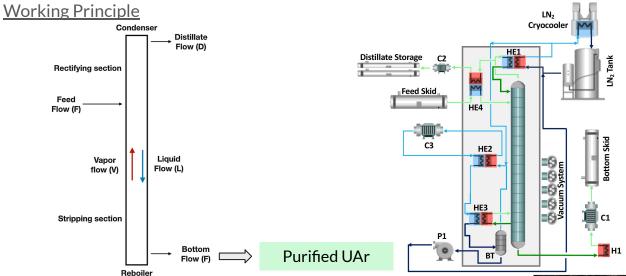
Current status of Urania: Site Preparation

Concrete base work has been finished. Site installation including various supporting systems is starting soon...

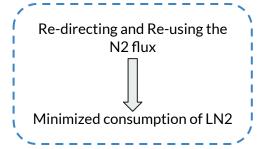


The shipping of UAr shall be done in liquid phase. Design of the containers are being finalized.

Total of 8 containers containing 15 tonnes each.

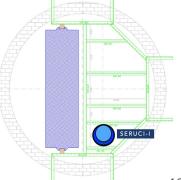


Aria Project: Cryogenic Distillation Plant

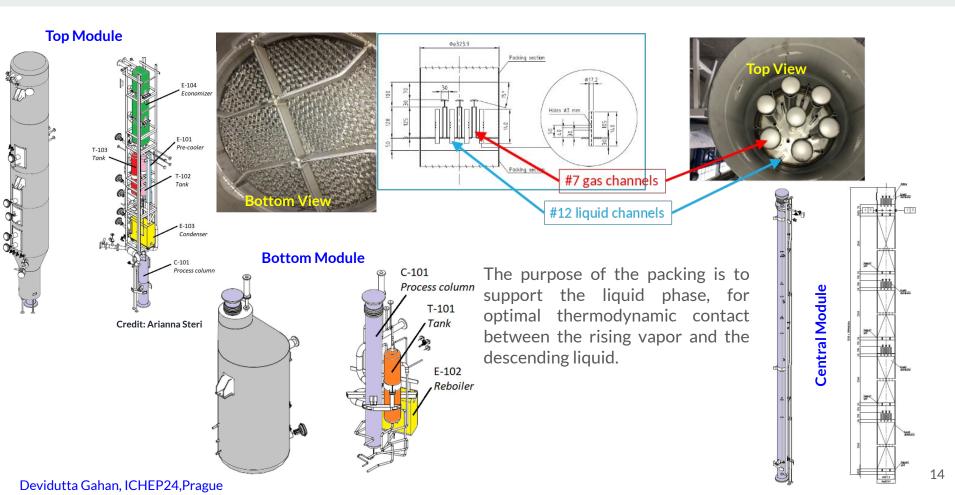

Aria Project: Conceptual and Structural Design

Two independent cryogenic loops:

- a. argon loop
- b. refrigeration loop


Two most important parameters of the distillation columns:

- a. Equivalent theoretical stages (N)
- b. Height equivalent to a theoretical plate (HETP)


Total column active height (L_a):

$$L_a = N \times HETP$$

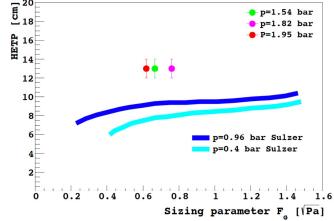
Aria Project: Conceptual and Structural Design

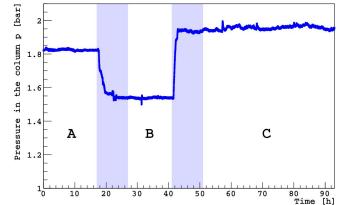
Aria Project: Prototype Seruci-0 Run and Results

A prototype plant called 'Seruci-0' was assembled to evaluate the

performance of the plant. It consisted of:

- a. The top module
- b. 1 central module
- c. The bottom module


A dedicated sampling system coupled to a UGA was used to monitor the feed, distillate and output flow


First operation with nitrogen in 2019 (Eur. Phys. J. C (2021) 81:359)

Second operation with argon in 2021 (Eur. Phys. J. C (2023) 83:453)

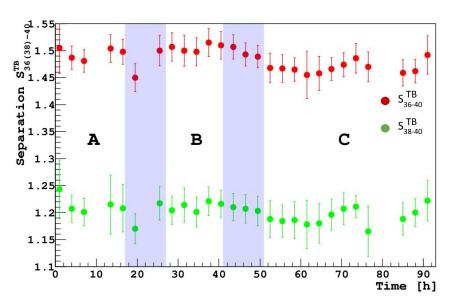
The Argon run was focused on performing a isotopic separation:

Aria Project: Prototype Seruci-0 Run and Results

A prototype plant called 'Seruci-0' was assembled to evaluate the

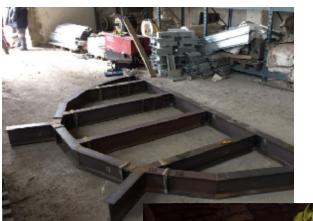
performance of the plant. It consisted of:

- a. The top module
- 1 central module
- c. The bottom module


A dedicated sampling system coupled to a UGA was used to monitor the feed, distillate and output flow

First operation with nitrogen in 2019 (Eur. Phys. J. C (2021) 81:359)

Second operation with argon in 2021 (Eur. Phys. J. C (2023) 83:453)


The Argon run was focused on performing a isotopic separation:

Measured separation of Argon stable isotopes with time.

Current status of Aria:

Installation of the support structure inside the shaft is ~ 25% completed. Resuming soon after a safety inspection..

Seruci-0 plans to run with Ar+O₂ and Ar+N₂ in trace mode to validate the plant performance for chemical distillation.

Lowering of the plant modules and installation starting end of Q1, 2025...

DArTinArDM Project

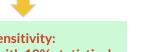
In order to assure the quality of UAr delivered, primarily regarding the content of ³⁹Ar, is essential for the operation of DS-20k.

DArT (Depleted Argon Target) refers to the small amount of Ar filled in a Cu vessel with an active mass of 1.35 kg.

- OFHC low radioactive vessel
- seen with eight 1 cm² radiopure SiPMs
- **ESR** reflectors \rightarrow
- Radiopure inner acrylic structure coated with TPB.

Need a dedicated setup to measure intrinsic activity of ³⁹Ar in UAr:

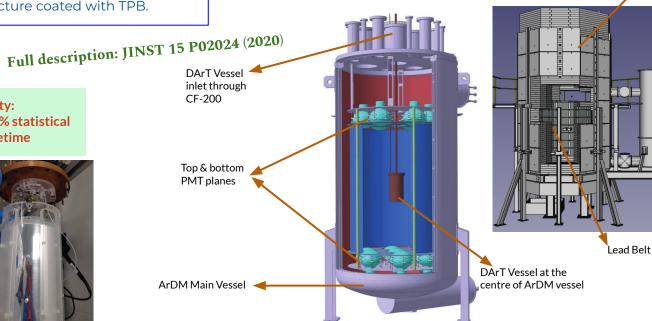
- concentration ~ 10⁻¹⁹ g/g: beyond reach of ICP-MS
- pure beta emitter: no HPGe screening.


Need for dedicated low background setup.

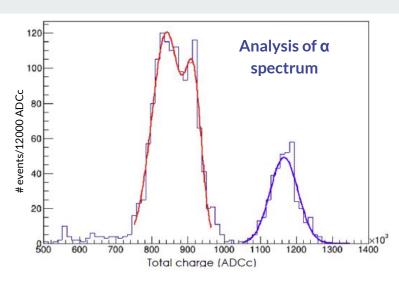
HDPE Shield

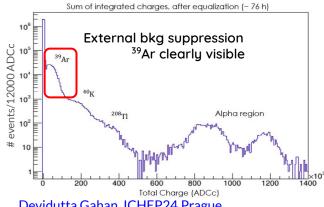
18

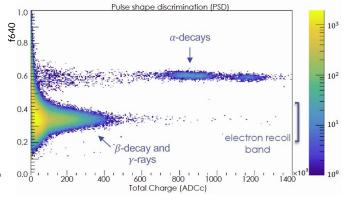
Combination of passive shielding and active veto



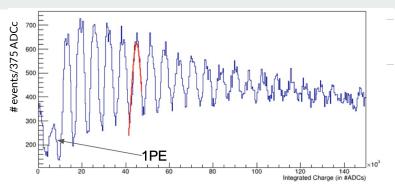
Projected Sensitivity: <1 mBq/kg with 10% statistical error in 1 week livetime



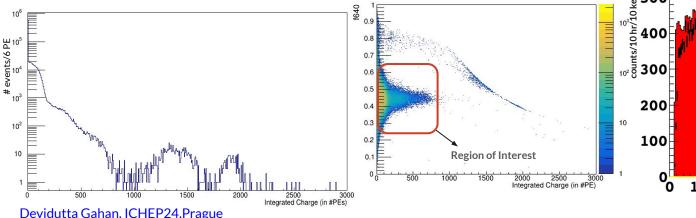

DArT in Test Setup

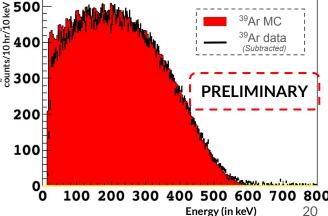

DArT has been running in a test setup Underground at LSC since 3 years.

Phase-1 of run was with first batch SiPMs based on DS-20k photoelectronics design but tuned for DArT optical conditions.

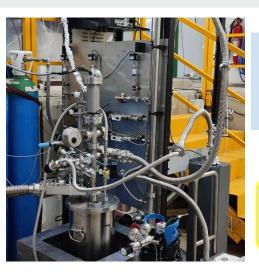

Devidutta Gahan, ICHEP24, Prague

DArT in Test Setup

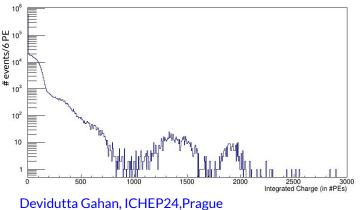

Phase-2 of run (till now) is with similar SiPMs but with improved performance in-terms of timing and response.

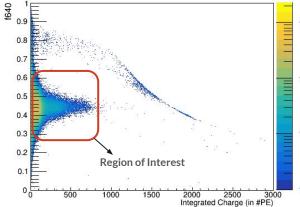

This setup was used to take data with AAr followed by UAr, in June.

Considering the UAr data as background only and analysis threshold of ~ 10 keV.


A competitive measurement of ³⁹Ar specific activity in AAr is in progress.

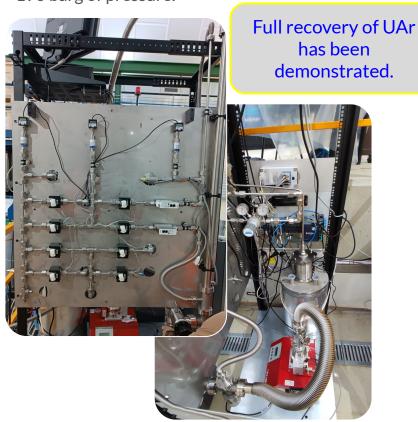
Devidutta Gahan, ICHEP24, Prague


DArT in Test Setup

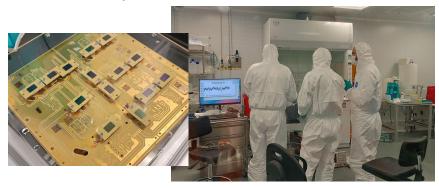


Phase-2 of run (till now) is with similar SiPMs but with improved performance in-terms of timing and response.

This setup was used to take data with AAr followed by UAr, in June.



It has also been proved that uantification of not-detector grade 1023 on (like from Urania) is also possible using only prompt scintillation.


Current status of

DArTinArDM:

The designed gas system has been fully tested upto ~190 barg of pressure.

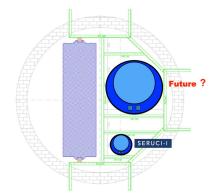
New batch of radiopure SiPMs received and characterized

ArDM is refurbished and all PMTs are fully functional.

Conclusion and Forward:

- Urania plant has been fabricated, leak tested and ready at Huston warehouse.
- The civil site is under preparation.
- The baseline for UAr transportation has been chosen to be done in liquid phase. Container design to be finalized.
- Aria prototype runs successful in proving the performance of the plant also extending to isotopic separation case.
- All required support structures (external and internal to the mine shaft) are in place.
- Final assembly of DArTinArDM is foreseen to start in September, 24.
- Full phase commissioning before the end of the year.

First batch of UAr from Urania to DArT may be in end-Q1, 2025


First batch of UAr from Urania to Aria expected in 2nd Half, 2025.

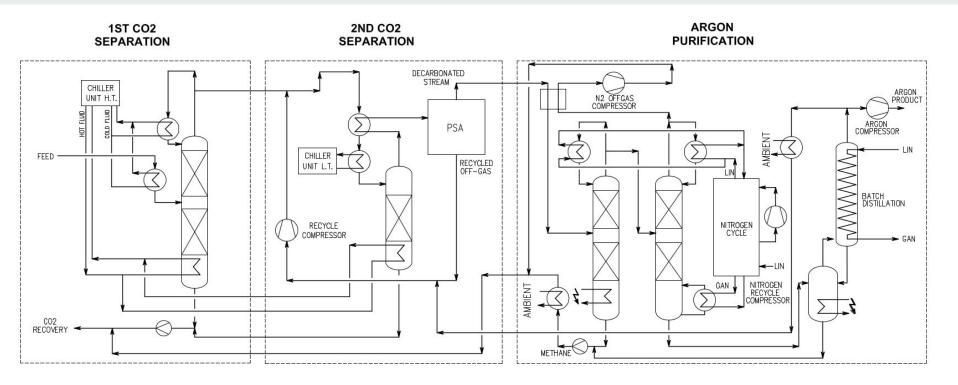
Interests from Global rare event search community:

• LEGEND-1000 (for $0\nu\beta\beta$ search) \Rightarrow 25 tonnes of UAr to be used in active veto volume. [MoU signed with GADMC]

 \rightarrow Suppression of ⁴²Ar

- COHERENT (for CEVNS) \Rightarrow 1 tonne for the active volume.
- ARGO (dark matter) ⇒ 400t [Next step of GADMC]
- DUNE MoO (Dark matter, SNv, $2\beta 0v$) \Rightarrow O(10,000) t MoO Workshop 2022 (https://congresos.adeituv.es/dune science/)

The voyage has begun....


Thank You for Your Attention

Backup

Process Flow Diagram of Urania:

