UNIVERSITÉ CLAUDE BERNARD LYON-1 / UNIVERSITY OF JOHANNESBURG

Probing cosmic censorship in Reissner-Nordström de Sitter black holes

Anna Chrysostomou

with A. S. Cornell (UJ), A. Deandrea (IP2I), H. Noshad (UJ), S.C. Park (Yonsei)

ICHEP2024 | 19 July 2024

- 1 [Weak cosmic censorship in Reissner-Nordström de Sitter black holes](#page-2-0) 1.1 How does $\Lambda > 0$ affect the $M - Q$ [parameter space?](#page-9-0)
- [What about the black hole structure?](#page-12-0)
- 3 [Strong cosmic censorship in Reissner-Nordström de Sitter black holes](#page-14-0) 3.1 [How do quasinormal modes come into play?](#page-20-0)

ANTI CONTRACTOR

photon sphere photon sphere

Photons become trapped into unstable circular orbits, forming a "surface".

accretion disk Astrophysical black holes consume matter from this hot, bright, rapidly spinning disk.

singularity

Shielded from view by the event horizon, and beyond the predictive power of general relativity, the curvature singularity could be the site of new physics…

event horizon There is no escape from within the black hole boundary.

Singularity: Consider (M, g) to be a 4D time-orientable Lorentzian manifold. Then a singularity is denoted by a future-directed future-inextendible time-like curve $C \subset M$.

Weak Cosmic Censorship: Consider this strongly causal space-time (M, g) that is asymptotically-flat at null infinity. Then (M, g) contains no naked singularities

Strong Cosmic Censorship: For generic vacuum data sets, the maximal Cauchy development (M, g_{ab}) is inextendible as a suitably regular Lorentzian manifold.

⇒ ensures that for a *physically-reasonable space-time*, a future-directed time-like curve is *inextendible* past a singularity

Singularity: Consider (M, g) to be a 4D time-orientable Lorentzian manifold. Then a singularity is denoted by a future-directed future-inextendible time-like curve *C* ⊂ M.

Weak Cosmic Censorship: Consider this strongly causal space-time (M, g) that is asymptotically-flat at null infinity. Then (M, g) contains no naked singularities

Strong Cosmic Censorship: For generic vacuum data sets, the maximal Cauchy development (M, g_{ab}) is inextendible as a suitably regular Lorentzian manifold.

⇒ ensures that for a *physically-reasonable space-time*, a future-directed time-like curve is *inextendible* past a singularity

 \star no formal universal proof, many revisions

- ⋆ *Sbierski (2018):* proved inextendability of the metric beyond
	- $r = 0$ singularity for *Schwarzschild* \Rightarrow SCC preservation

Stationary, charged, spherically-symmetric black hole:

$$
g_{\mu\nu}dx^{\mu}dx^{\nu} = -f(r)dt^2 + f(r)^{-1}dr^2 + r^2\left(d\theta^2 + \sin^2\theta d\phi^2\right)
$$

Einstein–Maxwell field equations

$$
\begin{aligned} R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu} \\ = 16\pi \left[F_{\mu\rho}F_{\nu}{}^{\rho} - \frac{1}{4}g_{\mu\nu}F_{\rho\sigma}F^{\rho\sigma} \right] \\ \nabla^{\nu}F_{\mu\nu} &= 0 \ , \nabla_{[\mu}F_{\nu\rho] = 0} \end{aligned}
$$

in de Sitter space-time

The "no-hair" conjecture

$$
f(r) = 1 - \frac{2M}{r} + \frac{Q^2}{r^2} - \frac{r^2}{L_{dS}^2}
$$

Stationary, charged, spherically-symmetric black hole:

$$
g_{\mu\nu}dx^{\mu}dx^{\nu} = -f(r)dt^2 + f(r)^{-1}dr^2 + r^2\left(d\theta^2 + \sin^2\theta d\phi^2\right)
$$

Einstein–Maxwell field equations

$$
\begin{aligned} R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu} \\ = 16\pi \left[F_{\mu\rho}F_{\nu}{}^{\rho} - \frac{1}{4}g_{\mu\nu}F_{\rho\sigma}F^{\rho\sigma}\right] \\ \nabla^{\nu}F_{\mu\nu} &= 0 \ , \nabla_{[\mu}F_{\nu\rho] = 0} \end{aligned}
$$

in de Sitter space-time

The "no-hair" conjecture

$$
f(r) = 1 - \frac{2M}{r} + \frac{Q^2}{r^2} - \frac{r^2}{L_{dS}^2} = 0
$$

horizons: $r_-, r_+, r_c; r_0$

c.f. RN:
$$
r_{\pm} = M^2 \pm \sqrt{M^2 - Q^2}
$$

Stationary, charged, spherically-symmetric black hole:

$$
g_{\mu\nu}dx^{\mu}dx^{\nu} = -f(r)dt^2 + f(r)^{-1}dr^2 + r^2\left(d\theta^2 + \sin^2\theta d\phi^2\right)
$$

Einstein–Maxwell field equations

$$
\begin{aligned} R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R + \Lambda g_{\mu\nu} \\ = 16\pi \left[F_{\mu\rho} F_{\nu}{}^{\rho} - \frac{1}{4} g_{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} \right] \\ \nabla^{\nu} F_{\mu\nu} &= 0 \ , \nabla_{[\mu} F_{\nu\rho] = 0} \end{aligned}
$$

in de Sitter space-time

The "no-hair" conjecture

$$
f(r) = 1 - \frac{2M}{r} + \frac{Q^2}{r^2} - \frac{r^2}{L_{dS}^2} = 0
$$

 $horizons:$ $length scale:$

$$
r_{-}, r_{+}, r_{c}; r_{0}
$$

\n
$$
M = Gm_{BH}c^{-2}
$$

\n
$$
Q = G^{1/2}q_{BH}c^{-2}
$$

\n
$$
L_{dS} = (3/\Lambda)^{1/2} = 1
$$

$$
r_{\pm} \neq M^2 \pm \sqrt{M^2 - Q^2}
$$

 $[G] = M^{-1}L^3T^{-2}$, $[c] = LT^{-1}$

 $[m_{BH}] = M$

6/13 Anna CHRYSOSTOMOU [Probing cosmic censorship in RNdS BHs](#page-0-0)

What about the black hole structure?

Two competing behaviours $(Λ > 0 \Rightarrow exp vs exp)$:

Asymptotic decay at r_+ , $\psi \sim e^{\Im m \{\omega_{n=0}\}t}$ [exponential decay]

Two competing behaviours $(Λ > 0 \Rightarrow exp vs exp)$:

Asymptotic decay at r_+ , $\psi \sim e^{\Im m \{\omega_{n=0}\}t}$ [quasinormal modes]

Two competing behaviours $(Λ > 0 \Rightarrow exp vs exp)$: Asymptotic decay at r_+ , $\psi \sim e^{\Im m \{\omega_{n=0}\}t}$ [quasinormal modes] Blueshift at *r*_−, $\psi \sim e^{\kappa_- t}$

A blueshift amplification phenomenon characterises the dynamics of infalling fields as they accumulate along the inner Cauchy horizon

Two competing behaviours $(Λ > 0 \Rightarrow exp vs exp)$: Asymptotic decay at r_+ , $\psi \sim e^{\Im m \{\omega_{n=0}\}t}$ [quasinormal modes] Blueshift at *r*[−], $\psi \sim e^{\kappa-t}$

A blueshift amplification phenomenon characterises the dynamics of infalling fields as they accumulate along the inner Cauchy horizon

$$
-\frac{\Im m\{\omega_{n=0}\}}{|\kappa_-|}<\frac{1}{2}\quad [Hintz\ \&\ Vasy]
$$

where $Im\{\omega\}$ < 0 *is a necessary condition for black hole stability*

What are black hole quasinormal modes?

Quasinormal mode and frequency

$$
\Psi(x^{\mu}) = \sum_{n=0}^{\infty} \sum_{\ell,m} \frac{\psi_{sn\ell}(r)}{r} e^{-i\omega t} Y_{\ell m}(\theta, \phi)
$$

- ⋆ *s*: spin of perturbing field
- *m*: azimuthal number for spherical harmonic decomposition in θ , ϕ
- $\star \ell$: angular/multipolar number for spherical harmonic decomposition in θ, ϕ
- \star *n*: overtone number labels ω by a monotonically increasing $|\mathfrak{Im}\{\omega\}|$

$$
\omega_{sn\ell}=\omega_R-i\omega_I
$$

- ⋆ R*e*{ω}: physical oscillation frequency → R*e*{ω} ∝ ℓ
- \star Im{ω}: damping → dissipative, "quasi" → $\lim_{\ell \to \infty} |\mathfrak{Im}\{\omega\}| = constant$

Black hole wave equation for massive charged scalar field:

$$
\frac{d^2}{dr_*^2}\varphi + \left[\left(\omega - \frac{qQ}{r}\right)^2 - V(r)\right]\varphi = 0 , \quad \frac{dr}{dr_*} = f(r)
$$

$$
e.g. V_{s=0} = f(r) \left(\frac{\ell(\ell+1)}{r^2} + \frac{f'(r)}{r} + \mu^2 \right)
$$

$$
\mu = \frac{m_s}{\hbar}, q \propto e \ (\mu] = L^{-1}, [q] = 1)
$$

Subjected to **QNM boundary conditions**:

purely ingoing:
$$
\varphi(r) \sim e^{-i\left(\omega - \frac{qQ}{r_+}\right)r}
$$
 $r \to r_+$
purely outgoing: $\varphi(r) \sim e^{+i\left(\omega - \frac{qQ}{r_c}\right)r}$ $r \to r_c$

Waves escape domain of study at the boundaries ⇒ dissipative

e.g. for
$$
\ell = 1
$$
, $\mu = 1$ & $q = 0.1$

e.g. for
$$
\ell = 1
$$
, $\mu = 0.1 \& \eta = 1$

∗ Λ > 0 & cosmic censorship influence parameter space

- $\star \Lambda > 0$ & cosmic censorship influence parameter space
- ∗ In non-extremised regions, *V*(*r*) is a potential barrier on $r_{+} \leq r \leq r_c$ for $\ell > 0 \Rightarrow$ QNMs throughout the phase space
- $∗$ Schwarz: beyond $\mu^2 > V(r^{peak})$, QNFs long-lived \Rightarrow RNdS (non-ext.): $V(r^{peak})$ rises with μ on $r_+ < r < r_c$
- ∗ But below µ*crit*: anomalous behaviour (I*m*{ω} ↓ with ℓ) (weak ℓ dependence; before which ONMs are anomalous)

- $\star \Lambda > 0$ & cosmic censorship influence parameter space
- ∗ In non-extremised regions, *V*(*r*) is a potential barrier on $r_{+} \leq r \leq r_c$ for $\ell > 0 \Rightarrow$ QNMs throughout the phase space
- \star Schwarz: beyond $\mu^2 > V(r^{peak})$, QNFs long-lived ⇒ lose QNM character RNdS (non-ext.): $V(r^{peak})$ rises with μ on $r_+ < r < r_c$
- \star But below μ_{crit} : anomalous behaviour ($\Im m\{\omega\} \downarrow$ with ℓ) (weak ℓ dependence; before which QNMs are anomalous)
- ⋆ SCC violated for "cold" RNdS black holes, on the *OU* line, particularly near $M \sim Q \sim 0.089$ – quantum effects?

Thank you

Backup slides

- \star [Influence of field mass](#page-31-0)
- ⋆ [Weak Gravity Conjecture & Festina-Lente bound](#page-34-0)
- \star [Families of QNMs within RNdS,](#page-37-0) [no anomalous behaviour](#page-39-0) $q \neq 0$
- \star [RNdS: Penrose diagram,](#page-0-1) [thermodynamics](#page-36-0)
- ⋆ [Strong Cosmic Censorship: background,](#page-0-1) [RN vs RNdS](#page-0-1)
- ⋆ [Strong Cosmic Censorship: QNMs in RNdS](#page-0-1)
- \star [Kaluza-Klein modes in 5D](#page-0-1)
- \star [Landscape of extra dimensional models](#page-0-1)

Effective potential for M = 0.185*, Q* = 0.016*,* Λ *= 3, n* = 0*, l* = 1*, q* = 0.1*, and* \uparrow μ *:*

Increasing μ increases the height of the potential barrier for $r_+ < r < r_c$

anomalous behaviour observed for $\beta > 1/2$

 $Recall: \mu \uparrow \Rightarrow |\mathfrak{Im}\{\omega\}| \downarrow \& \ell \uparrow \Rightarrow |\mathfrak{Im}\{\omega\}| \uparrow$ \hookrightarrow *not so for* $\mu < \mu_{crit} \sim 1.7$

Schwarz.:
$$
\Delta \Re e{\omega} = \overline{\Lambda} = 1/\sqrt{27} \pm 10^{-4}
$$

\n
$$
\lim_{\ell \to \infty} |\omega_{n=0,\ell}| = 2\Delta \Re e{\omega} = \overline{\Lambda}/2
$$

$$
SdS: \qquad \Delta \Re e \{\omega\} = \left(\frac{27}{1 - 9\Lambda}\right)^{-1/2} \pm 10^{-4}
$$

$$
\lim_{\ell \to \infty} |\omega_{n=0,\ell}| = 2\Delta \Re e \{\omega\}
$$

$$
RN \quad \Delta \Re\{ \omega \} = \left(\frac{\left(3 + \sqrt{9 - 8Q^2} \right)^3}{2 \left(1 + \sqrt{9 - 8Q^2} \right)} \right)^{-1/2} \pm 10^{-4}
$$

$$
\lim_{\ell \to \infty} |\omega_{n=0,\ell}| = 2\Delta \Re\{ \omega \}
$$

Weak Gravity Conjecture & Festina-Lente bound

From Andreas Maximilianus' [Scriptorum Seu Togae & Belli Notationum Selecta](http://uri.hab.de/instance/emblem/E049420.html)

[N. Arkani-Hamed, L. Motl, A. Nicolis, C. Vafa, JHEP 06 \(2007\) 060](https://inspirehep.net/literature/707820) [M. Montero, T Van Riet, G. Venken, JHEP 01 \(2020\) 039](https://inspirehep.net/literature/1757507)

WGC:
$$
\frac{m}{g_1 q} < \sqrt{2}M_p
$$
 for *some* charged state
FL: $\frac{m^4}{2g_1^2 q^2} \gtrsim 3M_p^2 H^2$ for *every* charged state

$$
\sqrt{6}g_1qM_PH < m^2 < 2g_1^2q^2M_P^2
$$

All SM fields satisfy the full bound!

Weak Gravity Conjecture & Festina-Lente bound

[N. Arkani-Hamed, L. Motl, A. Nicolis, C. Vafa, JHEP 06 \(2007\) 060](https://inspirehep.net/literature/707820) [M. Montero, T Van Riet, G. Venken, JHEP 01 \(2020\) 039](https://inspirehep.net/literature/1757507)

Schwarzschild modes (I) & de Sitter modes (II):

 $(I.i)$ photon-sphere modes: beneath line $M = Q$, approaching *NU* large $\Im m\{\omega\}$, $\Re e\{\omega\} \sim \mathcal{O}(0.01)$ for $Q < 0.1$

$$
\mathfrak{Im}\{\omega_{PS}\} \approx -i\left(n+\frac{1}{2}\right)\kappa_+ \quad \text{on } NU
$$

(*I*.*ii*) near-extremal modes: branch *OU* ($r_− \sim r_+$)

$$
\omega_{NE} \approx -i(\ell+n+1)\kappa_- = -i(\ell+n+1)\kappa_+ \ ;
$$

(*II*) dS modes: along branch *OU* (κ*^c* ∼ 1/*LdS*)

$$
\omega_{dS_{n=0}} \approx -i\ell \kappa_c \; , \quad \omega_{dS_{n\neq 0}} \approx -i(\ell+n+1)\kappa_c \; ;
$$

A semi-classical analysis: QNFs

For
$$
L = \sqrt{\ell(\ell+1)}
$$
, as a series expansion $\omega = \sum_{k=-1} \omega_k L^{-k}$
\n
$$
\omega_k = \sqrt{V(r_*^{max}) - 2iU}, \quad U \equiv U(V^{(2)}, V^{(3)}, V^{(4)}, V^{(5)}, V^{(6)})
$$
\n
$$
V^j = \frac{d^j V(r_*^{max})}{dr^j} = f(r) \frac{d}{dr} \left[f(r) \frac{d}{dr} \left[\dots \left[f(r) \frac{dV(r)}{dr} \right] \dots \right] \right]_{r \to r_*^{max}}
$$
\n
$$
r_*^{max} \approx r_0 + r_1 L^{-2} + \dots,
$$
\n
$$
V(r_*^{max}) \approx V_0 + V_1 L^{-2} + \dots
$$

 $q \neq 0 \Rightarrow$ two sets of solutions: ω_{+} (black-hole family) & ω_{c} (cosmological-horizon family) *For a fixed q,* $|\Re{\epsilon \{\omega_+\}}| < |\Re{\epsilon \{\omega_c\}}| \& \Im{\mathfrak{m} \{\omega_+\}}| < |\Im{\mathfrak{m} \{\omega_c\}}|$

.

$$
e.g.\,for\,M=Q=0.104,
$$

Increasing the charge from q = 0 *to q* = 0.1 *displaces the intersection* \hookrightarrow $\mu_{\text {crit }}$ can only be found in the μ M \gg qQ regime.

Three physical horizons,

$$
r_{\pm} = \pm a \mp b , \quad r_c = +a + b , \quad r_0 = -a - b ,
$$

$$
a = \frac{1}{2\sqrt{3}} \sqrt{\frac{(1+X)^2 - 12Q^2}{X}}, \quad b = \frac{1}{2} \sqrt{\frac{4}{3} - \frac{1 - 12Q^2}{3X} - \frac{X}{3} + \frac{2M}{a}} ,
$$

$$
X = \left(-1 + 54M^2 - 36Q^2 - 2\sqrt{27}\sqrt{\Delta}\right)^{1/3} ,
$$

and constraints,

$$
\frac{Q^2}{M^2} \lesssim 1 + \frac{1}{3}(M^2\Lambda) + \frac{4}{9}(M^2\Lambda)^2 + \frac{8}{9}(M^2\Lambda)^3 + \mathcal{O}(M^8\Lambda^4).
$$

$$
M^2\Lambda \le \frac{1}{18} \Big[1 + 12Q^2\Lambda + (1 - 4Q^2\Lambda)^{3/2} \Big]
$$