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B Greenhouse gases for gaseous detectors at CERN

F F F
Greenhouse gases
The strength of a GHG is defined by its Global Warming Potential GWP - F
(GWPCO2 =1) F F
GHGs are often required in gaseous detectors C4F10 (GWP = 8860)
Fluorinated gases account for the biggest emissions at CERN Used in RICH for optical
Most of F- gases were used before their environmental impact was properties
understood
F
Al | b
F'l' \\F
F— C c H G g
F/ \ F F | ~~F
FH |
CF4 (GWP =17390)
C2H2F4/R-134a (GWP =1430
Used | II'QPCsf ( . ) Used in RICHSs (optical SF6 (GWP =22800)
sedin or primary properties), Wire chambers -
ionization and charge (anti-polymerization) and Used mainly in RPCs as
multiplication MPGDs (time resolution) electron quencher
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B Greenhouse gases consumption from LHC

https://doi.org/10.25325/CERN-Environment-2023-003

CERN emissions during 1 year of Run 2 ~ 220 000 tCO2e
- RNE Ls2 RUN3 Half of them from particle detectors > mostly due to leaks
B & and operation
C2H2F4/R-134a biggest contributor > leaks from RPC
detector during operation
CF4 > due to operation of CSC, RICH, GEM systems
> Related to RPCs as R-134a
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B F-gasregulations

EU regulation on F- gases
Aim at limiting and preventing F- gases use
F- gas consumptions should be reduced:

- Environment
- Price
- Availability
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Price index (relative to 2014)

mmI)-|FC/EU phase down

Revised regulations + PFAS
PFAS: New regulation that includes F- gases

- EU Chemical Agency proposing to ban most of them
Revised regulations:

- EUF-gases

- Montreal Protocol on HFC

Industrial conversion to
new low-GWP gases
Increase due to
Stricter phase down +
supply chain issues
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B GHG reduction strategies overview

Detector performance
Gasrecuperation with alternative gases
Smaller recirculating systems ! \ i K
pTTTTTTT T T R ! Distillation : | RPC ECOGAS@GIF++ |
| Gas recirculation for : ! Membrane abso_r ption i | (AIDAInnova) !
i facilities and laboratory ! ' Pressure swing ! | |
! sized setups ,: R R ety ’ : Mitigation of R-134a i
N - R ‘ ! emm T * consumption with CO2 !
T s - i Alternatives to SF6 !
------------- Goal: reduce GHG i ;
~ emissions from e ’
LHC gas recirculation - particle detectors at .
f Design and optimization | CERN N Chemical studies
l of large LHC gas : R B N o |
E systems ! P \ : Gas species :
. K o T N ! qualification and |
M. . el el % i quantification |
S - - y N : i
Future studies N i
1 Simulations of : i\:
: " MPGDs ith detector Alternatives to i Pollutants production h
| : :o-;;;?waé;;;:sles performance with GHGs for MRPCs i studies ii
! new gases . S
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Gas recirculation
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B Gas recirculation _ ALCEMID gos system

Gas Systems at CERN can recirculate the gas

Pros and Cons

. e e . . . A Pre
Ongoing optimizations on gas recirculation pienis

@)
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For large volumes systems ~ 1-100 m3
Employed with GHGs or expensive gases
~15 recirculating systems for LHC : el B e
Operating 24/7 with 99.99% uptime (excluding & | R
interventions and external issues) PR Echast & Rl

gas system efficiency cycle (%)

Gas consumption reduction up to 90-100% (10% fresh

100.0!

99.9¢

99.980%

99.970% -

99.960%

99.950%

99.940%

00%

90%

Gas Systems efficiency
(external problems excluded)
~ 1 h downtime/year/system

injection sometimes kept for detector performance)

Higher system price paid back by the amount of gas Lrima == =l
saved Gas Sl?[;ply Purifier

Large installations = several euro racks installed in
different areas Analysis

\

Higher complexity of the system = more resources  surface Gas Building
required also for maintenance and operation

Mechanical = modifications to improve gas systems
operation and ensure better detector conditions

Ltion

Underground
Experimental
Cavern

Detector

Distribution

Y

: : L Und d |
Software = continuous improvement of monitoring rvice Cavern | Compressor

Service Cavern

and control systems
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B Small and micro recirculating gas systems

micro loop for Spark Chamber @

Small recirculating systems CERN Science Gateway

Front View for GIF++ Rear View
: 1 N e
£ Purifier Module .

Control and moniter  Gas Supply

Several facilities and laboratories using GHGs

L= -
!

- The sum of contributions from smaller facilities is
sometimes comparable with LHC gas systems

Goal: design smaller recirculating gas systems

- Target: 1-10 detector, mL to a few liters volume

- Size of the gas systems: as small as possible

- Price of the components: should be reduced as much
as possible for accessibility

- Alternatives to industrial controllers and components
might be needed to reduce costs

- Components should be validated for their use with
gaseous detectors

RPC R&D prototype

. ,7 supply J

Micro-loop

- Portable gas system for laboratory setups

- Ongoing effort to standardize the design to be flexible
and simple = knowledge transfer to institutes and
companies

Micro loop design
for Picosec detector

EP-DT
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Gas recuperation
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B Gasrecuperation systems: overview

Motivations for recuperation systems

In most systems, not all the gas can be recirculated due to detector
requirements

The GHGs in a gas mixture can be recovered
Working principle
- Gas mixture at the exhaust sent to the recuperation
- GHG components of the gas mixture are separated from the

other gas components using different techniques
- GHGis stored into bottles and reused as a fresh gas supply

Pros and Cons

- Suitable for large LHC installations = ~m? spared, KCHF

- Non standard and complex systems

- Each recuperation system designed specifically for a gas
mixture and a gas system

- Dedicated R&D, maintenance and operation needed

Gas recuperation systems allow to reduce GHG emissions
- Upto 60-85% of the exhausted gas can be recuperated

EP-DT
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I L H C re C u p e rati o n syste m s CMS RPC R-134a recuperation CMS CSC CF4 recuperation LHCb RICHI1 C4F10 recuperation

CMS RPCR-134a

- Constantly operated
- Recovers R-134a from CMS RPC gas mixture
- Complex separation technique due to azeotrope

between R-134a and isobutane erectrica. (R 2\

- Eﬁidency Up to 850/0’ ~99.5% quallty e R-134a recuperation daily efficiency
- Ongoing R&D to recuperate also SF6 on a poorT L A I
H c L X X ]
dedicated system é 80 - X&XX&X %’)‘&(«Mﬁ%&% :@& ]
CMS CSC CF4 = B 2 ) YOG
z | . ) R
- Constantly operated o “p . E
- Recovers CF4 with membranes adsorption and pressure swing  wf = 0 €St 2024 Run3 Operation 1
CyCles \: ‘ 1 Il | J L Il |I 1 1 ! |\ d 1 L |\ 1 Il 1 |\ I Il Il 1 I:

o

- Several optimization underwent over the past 10 years

- ~T0% efficiency, ~90% quality 20 @ @ @t @ @ e
LHCb RICHZ CF4 66 CMS CSC CF4 recuperation
S L
- Operated only when changing mixture in the detector Z sl S Y
- ~T0% efficiency, ~95% quality § [ .\ i S E
s — 4 o
LHCb RICH1 C4F10 5 F at 4 g2 ®a, oo
L A XX ] i
- Operated only during specific periods (cleaning, filling, o kR i Juo T
emptying) sk o 8 EP-
- Very old system, upgrade ongoing : r xXxXa 18
- ~80% efficiency, ~98% quality ol o
2014 2016 2018 2020 2022 2024
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Alternative gases
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B Evolution of F- gases in detectors

F- gases for particle detectors have always followed the industry and
adapted to regulations

PFCs CFCs HFCs
FE Montreal Protocol on
' o EU HFC regulation HFCs ?
FI =t g Future?
7 F FH 2014 2019
R13B1 R-134a

Ozone layer issue

Global Warming becoming an
issue

TFA, PFAS impact on health

F .

| 1987 Eco-friendly HFOs, 2023

o

7 \F F Montreal Protocol PFKs EU PFAS Proposal
CFC F f
cFa on CrCs D
H,C s |
F F CF,

R-1234ze C5F100
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B Alternative gases for RPCs: experimental setup

Detectors Gas mixture tests and validation

HPL-RPC, 2 mm gap, 2mm electrodes, ~70x100 cm? 1. Several gas mixtures explored and tested in
Experimental setups lab conditions using the CMS RPC one asa
Laboratory setup for detector characterization and gas mixture reference . .
exploratio)r/1 P & 2. Few selected candidates tested during muon

GIF++: muon beam tests, aging tests

Gas System 3.
6-components gas mixer

Same modules components of LHC gas systems

Data acquisition

Raw waveform: CAEN digitizers + offline analysis

beam @ GIF++ with LHC like background
radiation

One selected candidate undergoes long term
performance tests on detectors

I‘\ Rotating RPC
T trolley

Gianluca Rigoletti 15



B R-1234ze + R-134a gas mixtures

4 components, (SF6 + iso.) + R-1234ze + CO2 gas

mixtures

5 components, (SF6 + iso.) + R-134a + R-1234ze + CO2

Muon beam performance extensively studied
Ongoing with a selected HFO+CO2 gas mixture by
RPC ECOGAS collaboration (see D. Ramos Talk
ICHEP2024)
In general, currents with HFO higher than with std.

R-134a gas mixtures

gas mixtures

@) EP-DT
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The addition R-134a helps lowering the background
currents and prevents w.p. to be too high
Gas mixture is less eco-friendly than HFO only gas

mixtures

Detector Technologies

Normalized counts

HFO gas mixtures
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https://indico.cern.ch/event/1291157/contributions/5900394/
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B Mid term solution: CO2 to reduce R-134a consumption

HPL-RPC gas mixture LHC = ~95% R-134a, 5% iso, 0.3% SF6

2022 - Studies on replacing 95% R-134a with 30% CO2

- SF6 increased to 1% added to suppress streamers
- R-134areduction of 30%
- GHG reduction of ~15%

Nucl.Instrum.Meth.A 1049 l ATLAS RPC!

2023- Muon beam tests and long term tests at GIF++

- ~60 mC/cm2 integrated = ~ 2 x ATLAS Run 3
- Detector performance not significantly affected

- Further tests needed:
- Integrated HL-LHC charge
- Longer tests with lower SF6 or higher CO2

i

50-80 mC/cm2

! [
! L

f
~ 30 mC/cm2 ~ 150 mC/cm2 ~ 300 mC/cm2 ~ 840 mC/cm2

t ==

. 10 Year ATLAS RPC CMS RPC HL-LHC

Estimated for Certified operation with safet

ATLAS RPC Run 3 2 Y
mm gap factor 3
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Gas mixture is now used in
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B SF6 alternatives performance

Several gases tested in laboratory
C4F80, CF3I, R-1224YD, Novec 4710, 5110
C4F80, Novec 5110 = performance issues
CF31 = safety issues (mutagenic toxicity)

Novec 4710 and Amolea 1224yd selected for further
studies with muon beam and gamma background

GIF++ tests with muon beam and gamma background

Novec 4710 0.1%, Amolea 1224yd 0.5% matching
performance of Std mixture with 0.3% SF6

Novec 4710 selected for its performance but may
react with water > chemical studies ongoing

Amolea 1224yd most of them contain Cl >
understanding possible pollutants formation

EP-DT
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B Notonly detector performance: gas properties studies

UV spectrometry Novec 5110 UV Transmittance
Not only detector performance ™ ] P e
Understanding physical and chemical properties of gases is % ol c 1
fundamental to detector operation Gas under test| | Data analysis = “‘ UV - Visible
. . . o | Absorption
Environmental chemistry helps understanding pollutants gap | | ° ]
formation o 1 ]
a “\
. o o o || ]
Gas molecules interaction in the atmosphere
and In the deteCtor Thanks to B. Teissandier for helping in the ’ ‘_2(‘)0 S 4(‘)0 — 6(‘)0 — a<‘>o — mloo' -
Rain out - Water solubility » critical for humidified gas measurements and providing the instrument Wavlength [rr]

mixtures
Oxidation > Reactivity with OH-
Photolysis > UV (wavelength <300 nm) » quenching properties

Measurements at w p for d|fferent ABS
T T T \
GT HPL - 2.5*1010Q*cm
® Std.
* R-1234ze + R134a + 50% CO2

Novec 4710 Chromatogram

'

o b b 0

o+

Novec 4710 water solubility setup schema

Sigmnal [mV]

sana

T[T T [TTT T[T T[T T[T IT[TTTTR

D b b b b

00k v Ly v v b v b by
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Currents [uA]
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[ A R S ]

Time [min]
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B Conclusions

Several strategies to reduce GHG emissions from RPCs

- Gaseous particle detectors contribute to a noticeable amount of CO2e emissions at CERN
- Inthe future the use of F- gases will likely be more restrictive

Gas recirculating systems

- First approach towards reducing GHG emissions
- Some LHC detectors requires ~10% of fresh gas injection
- Gasrecirculation is advisable also for small, laboratory-sized setups

Gas recuperation systems

- Further approach, advisable for large systems where some gas needs to be exhausted

- Complex and non-standard: each gas systems requires a specific design to recuperate the GHG gas
component

- Theyrequire a considerable amount of resources and deep expertise
Alternative gases

- Alternatives to R-134a studies ongoing. CO2 proved to be a gas to mitigate R-134a emissions

- SFé6 alternatives extensively studied. Gas properties studied are needed to understand if gases could be
used in detectors and gas systems

- Future studies on replacing CF4 for MPGDs and new gas mixtures for MRPCs

EP-DT
Detector Technologies

@)

7

Gianluca Rigoletti 20



Thank you
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Impurities studies: F- measurements

R-134a/HFO + 40% CO2

A
1

/A

BV

.y

*

2

b 4

v ABS 10 - ~300 Hz/cm?
| & ABS 22 -» ~200 Hz/cm?

ABS 100 - ~40 Hz/cm?
L, rr———; | S =

100 150

Currents [uA]

Measurements at w.p. for different ABS

F Kodel HPL - 4.2 *101°Q*cm

T I I =
e Std.

¢ Std + 30% CO2 ]
A Std +30% CO2, 1% SF6 7

2019 = Std., HFO + R-134a + 40% CO2 40
1. F-production does not depend only on the _ wf -
currents but also on the gap electric field % *
2. Tested R-1234ze gas mixture produced 4x more g " /
F- than std. gas mixture I L
2022 = Std, Std + CO2 (+1% SF6), HFO + R134a + 50%
Cco2 ® o121
3. 30% of CO2 in the standard gas mixture has the =0
same F- production > F- production not N
proportional to R-134a f’
4. Using 1% SF6 to 30% CO2 + R-134a increases the
F- production > under investigation
5. HFO +R134a+50% CO2 produces 4x more F- =
than Std 8
ST E—

150

200
Currents [uA]

F- [ppm/h]

F- [ppm/h]

60

Rate @ w.p.

~®- Std. gas. mixture ||
s0[] ~®~ R-134a/HFO +40% CO2 gas mixture
40f = 2 -
30 ,r
C (‘ 4x F-
20 .
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1o} [
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‘ R B L
" %0 55 110
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B R-134a Recuperation system

Working design

1.Gas mixture completely cooled
down to liquid in a “cold” buffer

2.Liquid mixture slowly heated up
to gas into a “warm” buffer

3.Small thermodynamic
equilibrium steps between
vapour and liquid

4.Azeotropic vapour exhausted
from cold buffer through a
pressure controller

5.R-134a liquid extracted from
cold buffer with a compressor

6.Compressor stores liquid in a
tank = reused from CMS RPC
mixer

EP-DT
Detector Technologies
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B R-134a+R-1234ze + CO2/He g

R-134a + R-1234ze: two gas mixtures at high rates (1 CO2
50%, 1 He 30%):

He gas mixture has lower working point than CO2 one

Muon beam +

as mixtures @ GIF++

CO2 + R-1234ze gas mixtures have slightly higher
efficiency drop (-2 %)

He gas mixture has slightly lower currents than CO2
equivalent

+ HFO/R134a + CO2 50%
¥ HFO/R134a + HE 30%
{  Std.

gamma background

Working point €max Background currents @ w.p.
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B HFO flammability tests

Safety concerning HFO usage

e R-1234yf classified as mildly flammable > Focus *
on R-1234ze W
R-1234ze +i-C4H10 + 40% RH flammability test £ l —B—

conducted: illustration of a flame detachment with flame propagation
ISO 1056 standard flammability test (detachement + over a distance of at least 100 mm as criterion for flammability
flame propagation criteria) performed by external T ——— e
Iso-butane fraction mhcburenfiso-Butaie fraction of air includin
com pa ny test no. | in test gas mixture and HFO1234ze 2.25 mol% water reaction
ReSUItS in mol% TS in mol%
9 6.2 15.0 85.0 +
® Mixture with 1% i-C4H10 + R-1234ze is flammable 10 6.0 200 80.0
H 11 4.2 13.0 87.0 +
e Water vapour plays an important role - . = - :
13 2.2 13.0 87.0 +
X . 14 1.1 13.0 87.0 -
HFOs alone +i-C4H10 is flammable » Effects of the CO2 15 10 10.0 30.0 v
on the mixtures to be understood/checked L2 00 el SR .
4 0.0 1.0 89.0
18 0.0 10.0 90.0
19 0.0 9.0 91.0

https://edms.cern.ch/document/2463340/1
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https://edms.cern.ch/document/2463340/1

B SF6 adjustment in CO2 + R-134a gas mixture

Efflaency Streamer separatlon Muon beam only

S a0 [T R R R B I R RN I
Combination (30%, 40%, 50%) €02 x (0.3%, 0.6%, O . ]
300 | . ]
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. . . w200 e -
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30%/40% CO2 + 0.9% SF6 or 30% CO2 + 0.6% SF6 g 1o B
- selected gas mixtures = oF =
- Lower variation of streamer probability for the wk ¥ E
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B Optimization of gas system technologies

RPCs@LHC are operated with gas Optimization of gas systems

recirculation Finer granularity in gas distribution racks = ATLAS
RPC, LS2

RPC validated for 90% max. gas recirculation Control valves for pressure control = CMS RPC, LS2

Higher recirculation fractions leads to Gas system modifications for 4 component gas

mixtures = ATLAS RPC, Run 3

Recuperate remaining 10% of recirculated gas =
CMS RPC,Run 3

accumulation of impurities

>
| == as
Primary Mixer 1 ALICE MID, Run 2 ISE measurement
Gas Supply Purifier - ¥ .
Undel:groun(il § - e Recirc 75% 2
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B Waveforms of Std vs. HFO vs. HFO + R134a gas mixtures

HFO only > higher charge content:
bigger and longer signals

Waveforms with cosmics muons @ w.p.

Standard HFO + 69% CO2 (ECO3)
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HFO + R-134a only: lower charge
content and faster signals decay
times
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B Reduction of R-134a: addition of non-fluorinated gas

Reduction of R-134a in the standard gas mixture
by addition of a 4th, non-fluorinated gas

02: good performance but highly reactive > lower
flammability limit, higher currents due to oxidation
reactions

Ne: good performance but no availability on the market

CO2: good performance - selected as main candidate
for GIF++ tests

N2: high streamer contamination at low concentrations

He: good performance but problematic for PMTs in LHC
caverns

N20: discrete performance but increased working
point of ~300V

Ar: slightly high streamer probability

100

Cosmic muons
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Gas mixture | w.p.
Standard: 9540 V ®  Std. + 10% N2:-40 V

Std. + 10% O2: -170 V

Std. + 10% He: -640 V

§.
Std. + 10% Ne: -640 V +  Std. + 10% N20: +360 V
*

Std. + 10% CO2: -190 V

Std. + 10% Ar: -410 V
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B Data acquisition and analysis

Data acquisition

- Raw waveform digitizing: efficiency, charge, shape,
time analysis of signals
- HVscans, ~10* trigger per HV point

Data analysis

- When measuring MIP performance, efficiency
fitted with sigmoid function

- Working point definition: HV(95% of g __ ) + 150
Vv

- Used to compare different gas mixtures

- Streamers threshold @ 108 e

- Each gas mixture tested at different gamma
background radiation (ABS filters)

- Foremost parameters evaluated @ w.p. vs
background rate

EP-DT
Detector Technologies
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B Novec 4710 with R-134a/C0O2 gas mixtures

Novec 4710 + R-134a + 30% CO2 (+ 4.5% i-C4H10)

30% CO2 +0.2% N4710 and 30% CO2 + 0.6% SF6 have similar performance

(w.p., prompt charge, background currents)
30% CO2 + 0.2% N4710: lower gamma background currents

30% CO2 + 0.6% N4710: lower mean prompt charge but higher background

currents > under investigation

Muon prompt charge distribution @ w.p.
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Gamma currents [uA]
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