Overview of CERN strategies for the reduction of greenhouse gas emissions from particle detectors

Gianluca Rigoletti, M. C. Arena, M. Busato, R. Guida, S. Juks, B. Mandelli, M. Verzeroli

19/07/2024

EP-DT Detector Technologies

• Greenhouse gases for particle detectors at CERN

- Gas requirements and consumptions
- Gas regulations

• Strategies to reduce GHGs from particle detectors

- Recirculating gas systems
- Gas recuperation systems
- Alternative gas mixture studies

• Conclusions

Greenhouse gases for gaseous detectors at CERN

Greenhouse gases

The strength of a GHG is defined by its Global Warming Potential **GWP** (GWP_{CO2} = 1)

GHGs are often required in gaseous detectors

Fluorinated gases account for the biggest emissions at CERN

Most of F- gases were used before their environmental impact was understood

C2H2F4/R-134a (GWP = 1430)

Used in **RPCs** for primary ionization and charge multiplication

CF4 (GWP = 7390)

Used in **RICHs** (optical properties), **Wire** chambers (anti-polymerization) and **MPGDs** (time resolution)

C4F10 (GWP = 8860)

Used in **RICH** for optical properties

SF6 (GWP = 22800)

Used mainly in **RPCs** as electron quencher

Greenhouse gases consumption from LHC

https://doi.org/10.25325/CERN-Environment-2023-003

F- gas regulations

EU regulation on F- gases

Aim at **<u>limiting</u>** and <u>preventing</u> F- gases use F- gas consumptions should be reduced:

- Environment
- Price
- Availability

Revised regulations + PFAS

PFAS: New regulation that includes F- gases

- EU Chemical Agency proposing to <u>ban</u> most of them Revised regulations:
 - EU F- gases
 - Montreal Protocol on HFC

EP-DT Detector Technologies

GHG reduction strategies overview

Gas recirculation

Gas recirculation

Gas Systems at CERN can recirculate the gas

- For large volumes systems ~ 1-100 m^3
- Employed with **GHGs** or **expensive** gases
- ~15 recirculating systems for LHC
- Operating **24/7** with **99.99%** uptime (excluding interventions and external issues)

Pros and Cons

- *Gas consumption reduction up to* **90-100%** (10% fresh injection sometimes kept for detector performance)
- Higher system price **paid back** by the amount of gas saved
- Large installations ⇒ several euro racks installed in different areas
- Higher complexity of the system ⇒ more resources required also for maintenance and operation

Ongoing optimizations on gas recirculation

- **Mechanical** ⇒ modifications to improve gas systems operation and ensure better detector conditions
- Software ⇒ continuous improvement of monitoring and control systems

CERN EP-DT Detector Technologies

Small and micro recirculating gas systems

Several facilities and laboratories using GHGs

The **sum** of contributions from **smaller facilities** is _ sometimes comparable with LHC gas systems

Goal: design smaller recirculating gas systems

- **Target:** 1-10 detector, mL to a few liters volume -
- **Size** of the gas systems: as small as possible -
- Price of the components: should be reduced as much as possible for accessibility
- Alternatives to industrial controllers and components might be needed to reduce costs
- **Components** should be **validated** for their use with gaseous detectors

Micro-loop

- **Portable** gas system for laboratory setups -
- Ongoing effort to **standardize** the design to be flexible and simple \Rightarrow **knowledge transfer** to institutes and companies

micro loop for Spark Chamber @ CERN Science Gateway

Control and monitor Gas Supply

RPC R&D prototype

for Picosec detector

Gas recuperation

Gas recuperation systems: overview

Motivations for recuperation systems

In most systems, **not all the gas can be recirculated** due to detector requirements

The GHGs in a gas mixture can be recovered

Working principle

- Gas mixture at the **exhaust** sent to the recuperation
- GHG components of the gas mixture are **separated** from the other gas components using different techniques
- GHG is **stored** into bottles and reused as a **fresh gas** supply

Pros and Cons

Detector Technologies

- Suitable for large LHC installations $\Rightarrow \sim m^3$ spared, kCHF
- Non standard and **complex** systems
- Each recuperation system designed specifically for a gas mixture and a gas system
- Dedicated **R&D**, maintenance and operation needed

Gas recuperation systems allow to reduce GHG emissions

Up to 60-85% of the exhausted gas can be recuperated

LHC recuperation systems

CMS RPC R-134a

- Constantly operated
- Recovers **Ř-134a** from **CMS RPC** gas mixture Complex separation technique due to **azeotrope**
- between R-134a and isobutane
- Efficiency up to 85%, ~99.5% quality
- Ongoing **R&D** to recuperate also **SF6** on a dedicated system

CMS CSC CF4

- Constantly operated
- Recovers **CF4** with **membranes** adsorption and pressure swing cycles
- Several optimization underwent over the past 10 years
- ~70% efficiency, ~90% quality

LHCb RICH2 CF4

- Operated only when changing mixture in the detector
- ~70% efficiency, ~95% quality

LHCb RICH1 C4F10

- Operated only during specific periods (cleaning, filling, emptying)
- Very old system, upgrade ongoing
- ~80% efficiency, ~98% quality

CMS RPC R-134a recuperation

CMS CSC CF4 recuperation

Alternative gases

Evolution of F- gases in detectors

F- gases for particle detectors have always followed the industry and adapted to regulations

Alternative gases for RPCs: experimental setup

Detectors

HPL-RPC, 2 mm gap, 2mm electrodes, ~70x100 cm²

Experimental setups

Laboratory setup for detector characterization and gas mixture exploration

GIF++: muon beam tests, aging tests

Gas System

6-components gas mixer

Same modules components of LHC gas systems

Data acquisition

Raw waveform: CAEN digitizers + offline analysis

Gas mixture tests and validation

- 1. **Several gas mixtures** explored and **tested** in lab conditions using the CMS RPC one as a reference
- 2. Few selected candidates tested during muon beam @ GIF++ with LHC like background radiation
- 3. One selected candidate undergoes **long term** performance **tests** on detectors

R-1234ze + R-134a gas mixtures

4 components, (SF6 + iso.) + R-1234ze + CO2 gas mixtures

- **Muon** beam performance **extensively** studied
- Ongoing with a selected HFO+CO2 gas mixture by RPC ECOGAS collaboration (see <u>D. Ramos Talk</u> <u>ICHEP2024</u>)
- In general, currents with HFO higher than with std.
 R-134a gas mixtures

5 components, (SF6 + iso.) + R-134a + R-1234ze + CO2 gas mixtures

- The addition **R-134a** helps **lowering** the background currents and prevents w.p. to be too high
- Gas mixture is **less eco-friendly** than HFO only gas mixtures

Mid term solution: CO2 to reduce R-134a consumption

HPL-RPC gas mixture LHC \Rightarrow ~95% R-134a, 5% iso, 0.3% SF6

2022 - Studies on replacing 95% R-134a with 30% CO2

- SF6 increased to 1% added to suppress streamers
- R-134a reduction of 30%
- GHG reduction of ~15%

Gas mixture is now used in **ATLAS RPC!**

Nucl.Instrum.Meth.A 1049

2023- Muon beam tests and long term tests at GIF++

- ~60 mC/cm2 integrated \Rightarrow ~ 2 x **ATLAS Run 3**
- Detector performance not significantly affected
- Further tests needed:
 - Integrated HL-LHC charge
 - Longer tests with lower SF6 or higher CO2

SF6 alternatives performance

Several gases tested in laboratory C4F8O, CF3I, R-1224YD, Novec 4710, 5110 C4F8O, Novec 5110 ⇒ performance issues CF3I ⇒ safety issues (mutagenic toxicity)

Novec 4710 and **Amolea 1224yd** selected for further studies with muon beam and gamma background

GIF++ tests with muon beam and gamma background

Novec 4710 **0.1%**, Amolea 1224yd **0.5%** matching performance of Std mixture with **0.3% SF6**

Novec 4710 selected for its performance but may react with water → chemical studies ongoing
Amolea 1224yd most of them contain Cl → understanding possible pollutants formation

Not only detector performance: gas properties studies

Not only detector performance

Understanding **physical** and **chemical** properties of gases is fundamental to detector operation

Environmental chemistry helps understanding pollutants formation

Gas molecules interaction in the atmosphere and in the detector

<u>**Rain out</u>** \rightarrow Water solubility \rightarrow critical for humidified gas mixtures</u>

Oxidation → Reactivity with OH-

Photolysis → UV (wavelength < 300 nm) → quenching properties

Conclusions

Several strategies to reduce GHG emissions from RPCs

- Gaseous particle detectors contribute to a noticeable amount of CO2e emissions at CERN
- In the future the use of **F- gases** will likely be **more restrictive**

Gas recirculating systems

- First approach towards reducing GHG emissions
- Some LHC detectors requires ~10% of fresh gas injection
- Gas recirculation is advisable also for **small, laboratory-sized setups**

Gas recuperation systems

- Further approach, advisable for large systems where some gas needs to be exhausted
- Complex and non-standard: each gas systems requires a **specific design** to recuperate the GHG gas component
- They require a considerable amount of **resources** and deep **expertise**

Alternative gases

- Alternatives to R-134a studies ongoing. CO2 proved to be a gas to mitigate R-134a emissions
- **SF6 alternatives** extensively studied. Gas properties studied are needed to understand if gases could be used in detectors and gas systems
- Future studies on replacing **CF4** for MPGDs and new gas mixtures for MRPCs

Impurities studies: F- measurements

$2019 \Rightarrow$ Std., HFO + R-134a + 40% CO2

- F-production does **not** depend **only** on the currents but also on the gap electric field
- Tested R-1234ze gas mixture produced 4x more 2. F- than std. gas mixture

$2022 \Rightarrow$ Std, Std + CO2 (+1% SF6), HFO + R134a + 50% **CO2**

- 3. 30% of CO2 in the standard gas mixture has the same F- production → F- production not proportional to R-134a
- Using **1% SF6** to 30% CO2 + R-134a increases the **F**- **production** → under investigation
- HFO + R134a + 50% CO2 produces 4x more F-5. than Std

Detector Technologies

ABS 10 → ~300 Hz/cm² ABS 22 → ~200 Hz/cm²

ABS 100 → ~40 Hz/cm²

Currents [uA]

) 150 200 250

10

50

100

Rate @ w.p.

R-134a Recuperation system

Working design

- 1.Gas mixture completely cooled down to liquid in a "cold" buffer
 2.Liquid mixture slowly heated up to gas into a "warm" buffer
- 3.Small thermodynamic equilibrium steps between vapour and liquid
- 4.**Azeotropic** vapour **exhausted** from cold buffer through a pressure controller
- 5.R-134a liquid extracted from cold buffer with a compressor
 6.Compressor stores liquid in a tank ⇒ reused from CMS RPC mixer

R-134a + R-1234ze + CO2/He gas mixtures @ GIF++

R-134a + R-1234ze: two gas mixtures at high rates (1 CO2 50%, 1 He 30%):

He gas mixture has lower working point than CO2 one

CO2 + R-1234ze gas mixtures have slightly higher **efficiency drop** (-2 %)

He gas mixture has slightly lower currents than **CO2** equivalent

Std.

HFO/R134a + CO2 50% HFO/R134a + HE 30%

Muon beam + gamma background

CERN EP-DT Detector Technologies

HFO flammability tests

Safety concerning HFO usage

• R-1234yf classified as mildly flammable → Focus on R-1234ze

R-1234ze + i-C4H10 + 40% RH flammability test conducted:

ISO 1056 standard flammability test (detachement + flame propagation criteria) performed by external company

Results

- Mixture with 1% i-C4H10 + R-1234ze is flammable
- Water vapour plays an important role

HFOs alone + i-C4H10 is flammable → Effects of the CO2 on the mixtures to be understood/checked

illustration of a flame detachment with flame propagation over a distance of at least 100 mm as criterion for flammability

test no.	lso-butane fraction in test gas mixture in mol%	fraction of test gas mixture of iso-butane and HF01234ze in mol%	fraction of air including 2.25 mol% water in mol%	reaction
9	6.2	15.0	85.0	+
10	6.0	20.0	80.0	(#)
11	4.2	13.0	87.0	+
12	3.1	10.0	90.0	+
13	2.2	13.0	87.0	. +
14	1.1	13.0	87.0	
15	1.0	10.0	90.0	+
16	0.0	12.0	88.0	•
17	0.0	11.0	89.0	× .
18	0.0	10.0	90.0	-
19	0.0	9.0	91.0	-

https://edms.cern.ch/document/2463340/1

SF6 adjustment in CO2 + R-134a gas mixture

Combination (30%, 40%, 50%) **CO2** x (0.3%, 0.6%, 0.9%) **SF6**

- Higher efficiency-streamer separation for 30%/40% CO2 + 0.9% SF6 or 30% CO2 + 0.6% SF6
 → selected gas mixtures
- Lower variation of streamer probability for the same gas mixtures

27

Optimization of gas system technologies

RPCs@LHC are operated with gas recirculation

RPC validated for 90% max. gas recirculation

Higher recirculation fractions leads to accumulation of impurities

Optimization of gas systems

Finer granularity in gas distribution racks \Rightarrow ATLAS RPC, LS2

Control valves for pressure control \Rightarrow CMS RPC, LS2

Gas system modifications for 4 component gas mixtures ⇒ ATLAS RPC, Run 3

Recuperate remaining 10% of recirculated gas ⇒ CMS RPC, Run 3

ALICE MID, Run 2 ISE measurement

Waveforms of Std vs. HFO vs. HFO + R134a gas mixtures

Detector Technologies

Reduction of R-134a: addition of non-fluorinated gas

-

Reduction of R-134a in the standard gas mixture by addition of a 4th, non-fluorinated gas

O2: good performance but highly reactive → lower **flammability limit**, higher currents due to oxidation reactions

Ne: good performance but no availability on the market

CO2: good performance → **selected as main candidate** for GIF++ tests

N2: high streamer contamination at low concentrations

He: good performance but **problematic for PMTs in LHC** caverns

N2O: discrete performance but increased working point of ~ 300 V

Ar: slightly high streamer probability

Detector Technologies

Data acquisition and analysis

Data acquisition

- **Raw waveform** digitizing: efficiency, charge, shape, time analysis of signals
- HV scans, ~10⁴ trigger per HV point

Data analysis

- When measuring MIP performance, efficiency fitted with sigmoid function
- Working point definition: HV(95% of ε_{max}) + 150
 V
 - Used to compare different gas mixtures
- Streamers threshold @ 10⁸ e⁻
- Each gas mixture tested at different gamma background radiation (ABS filters)
- Foremost parameters evaluated @ w.p. vs background rate

EP-DT Detector Technologies

Novec 4710 with R-134a/CO2 gas mixtures

Novec 4710 + R-134a + 30% CO2 (+ 4.5% i-C4H10)

30% CO2 + 0.2% N4710 and **30% CO2 + 0.6% SF6** have similar performance (w.p., prompt charge, background currents)

30% CO2 + 0.2% N4710: lower gamma background currents

30% CO2 + 0.6% N4710: lower mean prompt charge but higher background currents \rightarrow under investigation

