g-2 from lattice QCD: the most recent result

Z. Fodor

Penn State, Univ. Wuppertal, FZ Juelich, Univ. Budapest, UCSD

for the BMW+DMZ Coll.: Nature 593 (7857), 51, 2021 & arXiv: 2308.04221, 2407.10913

ICHEP'24, July 20, 2024, Prague

Tensions in $(g-2)_\mu$: take-home message before '24

[Muon g-2 Theory Initiative, Phys.Rept. 887 (2020) 1-166]

[Budapest–Marseille–Wuppertal-coll., Nature 593, 51 (2021)]

[Muon g[-2 c](#page-0-0)o[ll.,](#page-2-0) [Ph](#page-0-0)[ys.](#page-1-0) [R](#page-2-0)[ev. L](#page-0-0)[et](#page-37-0)[t.](#page-38-0) [131](#page-0-0)[,](#page-37-0) [16](#page-38-0)[180](#page-0-0)[2 \(20](#page-43-0)23)

.

Z. Fodor G. 2. form lattice QCD: the most recent result July 19, 2024 2/16

Tensions in $(g-2)_\mu$: take-home message after '24

[Muon g-2 Theory Initiative, Phys.Rept. 887 (2020) 1-166]

[Budapest–Marseille–Wuppertal-coll., Nature 593, 51 (2021) & 2407.10913]

[Muon g[-2 c](#page-1-0)o[ll.,](#page-3-0) [Ph](#page-1-0)[ys.](#page-2-0) [R](#page-3-0)[ev. L](#page-0-0)[et](#page-37-0)[t.](#page-38-0) [131](#page-0-0)[,](#page-37-0) [16](#page-38-0)[180](#page-0-0)[2 \(20](#page-43-0)23)

.

Z. Fodor [g-2 from lattice QCD: the most recent result](#page-0-0) July 19, 2024 3 / 16

Outline

- Data driven method
- Lattice result
- scale determination
- noise reduction tail contribution
- window observables
- Summary

4 0 8 4 4 9 8 4 9 8 4 9 8

 \Rightarrow

 HVP \longrightarrow using the data-driven/R-ratio method 2

O Optical theorem

в

Use $e^+e^- \rightarrow$ had data of CMD, SND, BES, KLOE, BABAR, ...

4 0 8 1

Þ

 HVP \rightarrow \rightarrow using the data-driven/R-ratio method

O Optical theorem

Use $e^+e^- \rightarrow$ had data of CMD, SND, BES, KLOE, BABAR, ...

$$
a_{\mu}^{\text{LO-HVP}} = \left(\frac{\alpha}{\pi}\right)^2 \int \frac{ds}{s^2} K_{\mu}(s) R(s)
$$

4 0 8

≡∗

÷

Systematic uncertainty: ≈4 times larger than the statisti[cal](#page-7-0) [err](#page-9-0)[o](#page-3-0)[r](#page-4-0) [\(e](#page-8-0)[.](#page-9-0)[g.](#page-0-0) [D](#page-37-0)[a](#page-38-0)[vie](#page-0-0)[r](#page-37-0) [e](#page-38-0)[t a](#page-0-0)[l.\)](#page-43-0) Ω

 $a_{\mu}^{\text{\tiny{LO-HVP}}}$ L^{U-HVP} from lattice QCD $_{\textsf{\tiny Nature 593 (2021) 7857, 51}}$

Compute electromagnetic current-current correlator

в

$a_{\mu}^{\text{\tiny{LO-HVP}}}$ L^{U-HVP} from lattice QCD $_{\textsf{\tiny Nature 593 (2021) 7857, 51}}$

Compute electromagnetic current-current correlator

 $C(t) = \langle J_u(t)J_v(0) \rangle$

в

a LO-HVP L^{U-HVP} from lattice QCD $_{\textsf{\tiny Nature 593 (2021) 7857, 51}}$

Compute electromagnetic current-current correlator

$$
C(t) = \langle J_{\mu}(t)J_{\nu}(0) \rangle
$$
\n
$$
a_{\mu}^{\text{LO-HVP}} = \alpha^2 \int_0^\infty dt \ K(t) \ C(t)
$$
\n
$$
K(t) \text{ describes the leptonic part of diagram}
$$
\n
$$
A_{\mu}^{\text{rad, M}} = \frac{\sum_{\substack{\text{odd } n \text{ odd} \\ n \text{ odd}}}^{\text{rad, M}} \frac{100}{n} \left(\frac{1}{n} \prod_{\substack{\text{odd } n \text{ odd} \\ n \text{ odd}}}^{\text{rad, M}} \right)
$$

 \bar{F} \sim Γ

REPAREM

4 0 8 1 \leftarrow \leftarrow \leftarrow

da /dt IBMWc 17

Þ

Z. Fodor G. G. [g-2 from lattice QCD: the most recent result](#page-0-0) July 19, 2024 7/16

 \mathcal{A}

 \Rightarrow \Rightarrow \Rightarrow ÷. Þ

 \leftarrow \leftarrow \leftarrow

4 0 8

 QQ

• In 2017 the dominant uncertainty: finite volume \implies in 2020 dedicated large volume simulation earlier only 6 fm box, increased to 11 fm \implies in 2024 separation of the tail

 -111

- In 2017 the dominant uncertainty: finite volume \implies in 2020 dedicated large volume simulation earlier only 6 fm box, increased to 11 fm \implies in 2024 separation of the tail
- In 2020 the dominant uncertainty: continuum extrapolation
- \implies \implies \implies new, even finer lattice with 0.048 fm lattic[e s](#page-13-0)[pa](#page-15-0)[c](#page-11-0)i[n](#page-14-0)[g](#page-15-0)

Z. Fodor Electrom G-2 from lattice QCD: the most recent result July 19, 2024 7/16

 Ω

Z. Fodor G. 2. form lattice QCD: the most recent result July 19, 2024 8/16

 \mathcal{A}

 \Rightarrow \Rightarrow \Rightarrow ÷. Þ

 \leftarrow \leftarrow \leftarrow

4 0 8

 QQ

• Statistic/noise reduction: all-to-all propagators most of the noise comes from the tail: $t > 3$ fm \implies in 2024 separation of the tail and use data driven method

 -111

Braker

- Statistic/noise reduction: all-to-all propagators most of the noise comes from the tail: $t > 3$ fm \implies in 2024 separation of the tail and use data driven method
- Scale for physical point & dedicated isospin breaking analysis

.

The Control Time

റാ റ

Lattice spacing 'a' is not an input, α_s is, must be determined 'a' enters into a_u calculation:

 299

Lattice spacing 'a' is not an input, α_s is, must be determined 'a' enters into a_u calculation:

- \bullet physical value of m_u
- **p** physical values of m_π , m_K

Þ

Lattice spacing 'a' is not an input, α_s is, must be determined 'a' enters into a_u calculation:

- \bullet physical value of m_u
- **P** physical values of m_{π} , m_{K}
- $\longrightarrow \Delta_{\text{scale}} a_{\mu} \sim 2 \cdot \Delta(\text{scale})$

Þ

Lattice spacing 'a' is not an input, α_s is, must be determined 'a' enters into a_u calculation:

- \bullet physical value of m_u
- **P** physical values of m_{π} , m_{K}
- $\longrightarrow \Delta_{\text{scale}} a_u \sim 2 \cdot \Delta(\text{scale})$
	- **1)** M_{Ω} scale setting $\longrightarrow a = (aM_{\Omega})^{\text{lat}}/M_{\Omega}^{\text{exp}}$
		- Experimentally well known: 1672.45(29) MeV [PDG 2018]
		- \bullet Moderate m_a dependence
		- Can be precisely determined on the lattice

4 0 8 4 6 8 4 9 8 4 9 8 1

Lattice spacing 'a' is not an input, α_s is, must be determined 'a' enters into a_u calculation:

- \bullet physical value of m_μ
- **P** physical values of m_{π} , m_{K}
- $\longrightarrow \Delta_{\text{scale}} a_u \sim 2 \cdot \Delta(\text{scale})$
	- **1)** M_{Ω} scale setting $\longrightarrow a = (aM_{\Omega})^{\text{lat}}/M_{\Omega}^{\text{exp}}$
		- Experimentally well known: 1672.45(29) MeV [PDG 2018]
		- \bullet Moderate m_a dependence
		- Can be precisely determined on the lattice

 $2\mathbf{w}_0$ scale setting: gauge flow in a fictitious fifth dimension

- Moderate m_q dependence
- Can be precisely determined on the lattice
- No experimental value

 \longrightarrow Determine value of w_0 from $M_\Omega \cdot w_0$

 $w_0 = 0.17245(22)(46)[51]$ fm

 299

重

Noise reduction

• noise/signal in $C(t) = \langle J(t)J(0) \rangle$ grows for large distances

重

4 0 8

 Ω

Þ

. Low Mode Averaging: use exact (all2all) quark propagator in IR and stochastic in UV

 \leftarrow

 Ω

- **Low Mode Averaging: use exact** (all2all) quark propagator in IR and stochastic in UV
- 2020 decrease noise by replacing $C(t)$ by upper/lower bounds above t_c

 $0 \le C(t) \le C(t_c) e^{-E_{2\pi}(t-t_c)}$

 \leftarrow \Box

- **Low Mode Averaging: use exact** (all2all) quark propagator in IR and stochastic in UV
- 2020 decrease noise by replacing $C(t)$ by upper/lower bounds above t_c

 $0 \le C(t) \le C(t_c) e^{-E_{2\pi}(t-t_c)}$

 \leftarrow \Box

 \bullet 2024: tail contribution for $t > 2.8$ fm from data driven approach

 Ω

Tail (long distance) contribution: $t > 2.8$ fm

Z. Fodor G. G. [g-2 from lattice QCD: the most recent result](#page-0-0) July 19, 2024 11/16

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$

 Ω

Tail (long distance) contribution: $t > 2.8$ fm

- $t > 2.8$ fm contributes only less than 5%
- data driven error: an order of magnitude better than lattice
- low energy part (below ρ) all agree
- we can be generous with errors: even 5 time[s](#page-28-0) l[ar](#page-30-0)[g](#page-27-0)[e](#page-28-0)[r](#page-29-0)[wo](#page-0-0)[u](#page-37-0)[l](#page-38-0)[dn](#page-0-0)['t](#page-37-0)[ch](#page-0-0)[ang](#page-43-0)e

• Restrict correlator to window between $t_1 = 0.4$ fm and $t_2 = 1.0$ fm

[RBC/UKQCD'18]

K ロ K K 御 K K 君 K K 君 K L

÷.

 QQ

• Restrict correlator to window between $t_1 = 0.4$ fm and $t_2 = 1.0$ fm

1.5 window [RBC/UKQCD'18] 1.0 0.5 $_{0.0}$ $\frac{da_{\mu}/dt}{da_{\mu,\text{wir}}/dt} \frac{[BMWe'17]}{[BMWe'17]} =$ 400 300 200 100 θ 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 45 tfml $(144 \times 96^3, a \sim 0.064 \text{ fm}, M_{\pi} \sim 135 \text{ MeV})$

[RBC/UKQCD'18]

 \bullet Less challenging than full a_μ

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$

в

• Restrict correlator to window between $t_1 = 0.4$ fm and $t_2 = 1.0$ fm

1.5 window [RBC/UKQCD'18] 1.0 0.5 $_{0.0}$ $\frac{da_{\mu}/dt}{da_{\mu,\text{wir}}/dt} \frac{[BMWe'17]}{[BMWe'17]} =$ 400 300 200 100 θ $0₀$ 0.5 1.0 1.5 2.0 25 3.0 3.5 40 45 tfml $(144 \times 96^3, a \sim 0.064 \text{ fm}, M_{\pi} \sim 135 \text{ MeV})$

[RBC/UKQCD'18]

- \bullet Less challenging than full a_μ
	- **·** signal/noise
	- lattice artefacts (short & long)
	- **o** finite size effects
	- R-ratio possible: other kernel

イロト イ押 トイラト イラト

Þ

• Restrict correlator to window between $t_1 = 0.4$ fm and $t_2 = 1.0$ fm

1.5 window [RBC/UKQCD'18] 1.0 0.5 $_{0.0}$ $\frac{da_{\mu}/dt}{da_{\mu \text{ wind}}/dt}$ [BMWc'17] 400 300 200 100 θ n n 0.5 10 1.5 20 25 3.0 3.5 40 45 tfml $(144 \times 96^3, a \sim 0.064 \text{ fm}, M_{\pi} \sim 135 \text{ MeV})$

[RBC/UKQCD'18]

- \bullet Less challenging than full a_μ
	- **·** signal/noise
	- lattice artefacts (short & long)
	- **o** finite size effects
	- R-ratio possible: other kernel

about two orders of magnitude easier (CPU and manpower)

イロト イ押ト イヨト イヨト

Þ

• Restrict correlator to window between $t_1 = 0.4$ fm and $t_2 = 1.0$ fm

1.5 window [RBC/UKQCD'18] 1.0 0.5 $0₀$ $\frac{da_{\mu}/dt}{da_{\mu}\sin/dt}$ [BMWc¹⁷] 400 300 200 100 θ n n 0.5 10 1.5 20 25 3.0 3.5 40 45 tfm1 $(144 \times 96^3, a \sim 0.064 \text{ fm}, M_{\pi} \sim 135 \text{ MeV})$

[RBC/UKQCD'18]

- \bullet Less challenging than full a_{μ}
	- **·** signal/noise
	- lattice artefacts (short & long)
	- **o** finite size effects
	- R-ratio possible: other kernel

about two orders of magnitude easier (CPU and manpower)

histogram of 250,000 fits with and without improvements

イロト イ押 トイラト イラト

• Restrict correlator to window between $t_1 = 0.4$ fm and $t_2 = 1.0$ fm

1.5 window [RBC/UKQCD'18] 1.0 0.5 $0₀$ $\frac{da_{\mu}/dt}{da_{\mu}\sin/dt}$ [BMWc¹⁷] 400 300 200 100 θ n n 0.5 10 1.5 20 25 3.0 3.5 40 45 tfm1 $(144 \times 96^3, a \sim 0.064 \text{ fm}, M_{\pi} \sim 135 \text{ MeV})$

[RBC/UKQCD'18]

- \bullet Less challenging than full a_{μ}
	- **·** signal/noise
	- lattice artefacts (short & long)
	- **o** finite size effects
	- R-ratio possible: other kernel

about two orders of magnitude easier (CPU and manpower)

histogram of 250,000 fits with and without improvements 3.7 σ tension

イロト イ押 トイラト イラト

Þ

• Restrict correlator to window between $t_1 = 0.4$ fm and $t_2 = 1.0$ fm

[RBC/UKQCD'18]

- \bullet Less challenging than full a_{μ}
	- **·** signal/noise
	- lattice artefacts (short & long)
	- **o** finite size effects
	- R-ratio possible: other kernel

about two orders of magnitude easier (CPU and manpower)

histogram of 250,000 fits with and without improvements 3.7 σ tension

Z. Fodor Electrom G-2 from lattice QCD: the most recent result July 19, 2024 12/16

 Ω

Window observable tension: other groups

Huge tension with our result and with the aver[ag](#page-36-0)[e](#page-38-0) [e](#page-0-0)[ve](#page-37-0)[n](#page-38-0) [m](#page-0-0)[o](#page-37-0)[r](#page-38-0)e

в

Summary & take-home message

Hadronic vacuum polarization final result: 714.1(2.2)(2.5)[3.3] · 10−¹⁰

.

4 0 8 1 \mathcal{A} 画 \mathbf{h} \sim

[Summary](#page-38-0)

Final result 2020

 Ω

∍

 \approx 4–5 σ tensions for distance & energy regions (reduced, see Zhang)

あきする 新

4 0 8 \overline{AB}

 \approx 4–5 σ tensions for distance & energy regions (reduced, see Zhang)

Lattice window: $0.4-1.0$ fm approx. 30% of the total more than 50% of the total

 e^+e^- window 0.60–0.88 GeV

 \approx 4–5 σ tensions for distance & energy regions (reduced, see Zhang)

Lattice window: $0.4-1.0$ fm approx. 30% of the total more than 50% of the total

 e^+e^- window 0.60–0.88 GeV

 Ω

 \approx 4–5 σ tensions for distance & energy regions (reduced, see Zhang)

Lattice window: $0.4-1.0$ fm approx. 30% of the total more than 50% of the total

 e^+e^- window 0.60–0.88 GeV

イロト イ押ト イヨト イヨト

 Ω