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Problem:  Future high-energy physics = too expensive

• Consensus: build e+–e– collider

• Linear colliders (e.g., ILC) or circular colliders (e.g., FCC) → €10B scale 
 
                  cost driven by RF accelerating gradient (~100 MV/m) 

International Linear Collider
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• Consensus: build e+–e– collider

• Linear colliders (e.g., ILC) or circular colliders (e.g., FCC) → €10B scale 
 
                  cost driven by RF accelerating gradient (~100 MV/m) 

• EU Strategy for Particle Physics 20201:


• “…intensification of R&D is required.” 


• e.g. “Development and exploitation of  
laser/plasma acceleration techniques”

International Linear Collider
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[1] European Strategy for Particle Physics - Accelerator R&D Roadmap (2022)



Solution:  Plasma-based particle accelerators
Higher gradients (10–1000×, GV/m-scale) → shorter/cheaper accelerators
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• Plasma wakefields:


• Driven by lasers or  
particle beams


• Accelerating, focusing


• 10–100 µm-scale (tiny!)



Solution:  Plasma-based particle accelerators
Higher gradients (10–1000×, GV/m-scale) → shorter/cheaper accelerators
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[2] Wang et al., Nature 595, 516 (2021)

[3] Pompili et al., Nature 605, 659 (2022)
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• Plasma wakefields:


• Driven by lasers or  
particle beams


• Accelerating, focusing


• 10–100 µm-scale (tiny!)

• Recent application: FELs2,3


• Why not HEP?



Fundamental challenges:  Prompting rethink of plasma accelerators
Staging (high energy unreachable in single stage) and stability

1.  Staging problem: coupling beams between  
                              plasma accelerators (stages)


• In- and out-coupling of drivers


• Refocusing beams → chromaticity  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            Particle-in-cell (PIC) simulation. Source: VisualPIC

Fundamental challenges:  Prompting rethink of plasma accelerators
Staging (high energy unreachable in single stage) and stability

1.  Staging problem: coupling beams between  
                              plasma accelerators (stages)


• In- and out-coupling of drivers


• Refocusing beams → chromaticity  

2.  Stability problem: extreme sensitivity


• µm/fs tolerances on alignment/timing


• Instabilities
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High-power 
laser 

(a0 ≫ 1) 

High-energy 
electron 
(γ0 ≫ 104)

Blackburn et al., Phys. Plasmas 25, 083108 (2018)

   LUXE Collaboration, EPJ-ST 230, 2445 (2021)

= a0 

Near-term application:  Strong-field QED

• Schwinger field: ~1018 V/m ⋙ high-power lasers


• Collide high-power laser with high-energy e– → boost field


• Experiments reached χ ≈ 0.3 (fraction of Schwinger field)


• χ ≈ 10–100 → lab astrophysics (e.g., surface of magnetars)


• χ ≳ 1000 → no theory! (new physics, emergent properties?)

Tech demonstrator for high energy and stability
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• Plasma-based SFQED machine → win-win


• 🥳 for SFQED research:  
cheap, high-energy e– → new experiments (χ ≫ 1)


• 💪 for plasma accelerators:  
“minimal viable product” for HEP  
 (high energy/stability—low quality/rep. rate)



The SPARTA project
A flow chart
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What are these proposed concepts?



New concept #1:  Nonlinear plasma lenses
A new kind of plasma accelerator — solving staging

• Plasma lens = strong, compact focusing device
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New concept #1:  Nonlinear plasma lenses
A new kind of plasma accelerator — solving staging

• Plasma lens = strong, compact focusing device

• Idea: Achromatic beamline with nonlinear plasma lenses 
               → Beam quality preserved 
               → Easy in/out-coupling of drivers
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Figure 4: Proposed optics using transversely tapered plasma lenses. From Lindstrøm, to be published (2021).
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• Idea: Achromatic beamline with nonlinear plasma lenses 
               → Beam quality preserved 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Research question: 
Can we make this lens?

EXISTSDOES NOT 
EXIST (YET)



New concept #2:  Self-correction mechanisms
A new kind of plasma accelerator — solving stability

• Achromatic beamline between stages → longitudinal dispersion (R56)
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New concept #2:  Self-correction mechanisms
A new kind of plasma accelerator — solving stability

• Achromatic beamline between stages → longitudinal dispersion (R56)

• Discovery: Simulation shows feedback loop between field and beam → self-stabilization 
                  → Damps energy spread and energy offset 
                  → Greatly improves tolerances (e.g., sub-fs → 10 fs)
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Research question: 
Will this occur in a  

“real” machine?

“IDEALIZED” SIMULATION
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Final goal:  Blueprints for a strong-field QED machine
Putting the solutions for staging and stability to the test

9



Final goal:  Blueprints for a strong-field QED machine
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• Step 1: Design a test facility for staging


• Collab. with accelerator labs (SLAC, DESY interested)
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Final goal:  Blueprints for a strong-field QED machine
Putting the solutions for staging and stability to the test

• Step 1: Design a test facility for staging


• Collab. with accelerator labs (SLAC, DESY interested)

• Step 2: Design a strong-field QED machine


• Conceptual only, if built will be at €50–100M scale
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Final goal:  Blueprints for a strong-field QED machine
Putting the solutions for staging and stability to the test

• Step 1: Design a test facility for staging


• Collab. with accelerator labs (SLAC, DESY interested)

• Step 2: Design a strong-field QED machine


• Conceptual only, if built will be at €50–100M scale

Research question: 
Strong-field QED machine 
—how compact can it be?
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The plan
Three main objectives

Objective #2: Investigate self-stabilization in plasma accelerators Year 1 Year 2 Year 3 Year 4 Year 5

Objective #1: Develop nonlinear plasma lenses Year 1 Year 2 Year 3 Year 4 Year 5

Objective #3: Conceptual designs of multistage plasma-accelerator facilities Year 1 Year 2 Year 3 Year 4 Year 5
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The plan
Three main objectives

• Team:  PI (Carl A. Lindstrøm)  +  2 postdocs  +  2 PhDs


• Collaborations:

Objective #2: Investigate self-stabilization in plasma accelerators Year 1 Year 2 Year 3 Year 4 Year 5

Objective #1: Develop nonlinear plasma lenses Year 1 Year 2 Year 3 Year 4 Year 5

Objective #3: Conceptual designs of multistage plasma-accelerator facilities Year 1 Year 2 Year 3 Year 4 Year 5
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High-performance computingAccelerator laboratories



“But what will you actually do?”
Example of CERN-related experiments
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Lindstrøm et al., PRL 121, 194801 (2018)

Experiments 
CERN 2018

• Plan for Objective #1:


• Identify mechanism for making nonlinear plasma 
lens.


• Construct the plasma lens


• Measure the magnetic field profile.


• Beam-based B-field measurements at the CLEAR 
facility at CERN.


• Collaboration with DESY and Oxford University


• Similarly, Objective #2 involves experiments at SLAC.



Recent impact on HEP
New idea: plasma–RF hybrid Higgs factory — next step after SFQED machine?
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• Asymmetric collider concept → avoids positron acceleration in plasma

• “National scale” (~3 km, ~€2.5B) → fits on the campus of ~any national lab
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The HALHF collider concept — Foster, D’Arcy & Lindstrøm, New Journal of Physics (accepted, 2023)
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Recent impact on HEP
New idea: plasma–RF hybrid Higgs factory — next step after SFQED machine?

• Massive interest from plasma-accelerator and linear-collider community
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SPARTA:  Staging of Plasma Accelerators for Realizing Timely Applications

• Innovative solution to the cost problems in HEP
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SPARTA:  Staging of Plasma Accelerators for Realizing Timely Applications

• Innovative solution to the cost problems in HEP

• Realizing two groundbreaking new concepts:


(1) Nonlinear plasma lenses: solving the staging problem


(2) Self-correction mechanism: solving the stability problem

• Goal: blueprints for a strong-field QED machine (a technology demonstrator)
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Starts 
1 Jan 2024 

(5 years)


Thank you 
for listening!

The SPARTA project 
Staging of Plasma Accelerators  
for Realizing Timely Applications

“Plasma Spartans” 
as generated  

by MidJourney AI


