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Problem: Future high-energy physics = too expensive

e Consensus: build et—e— collider

* [inear colliders (e.q., ILC) or circular colliders (e.g., FCC) — €10B scale

|—> cost driven by RF accelerating gradient (~100 MV/m)
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Solution: Plasma-based particle accelerators

Higher gradients (10-1000x, GV/m-scale) — shorter/cheaper accelerators

e Plasma wakefields:

Plasma cell

>k  Driven by lasers or
particle beams

 Accelerating,

 10-100 pm-scale (tiny!)

Beam direction



Solution: Plasma-based particle accelerators

Higher gradients (10-1000x, GV/m-scale) — shorter/cheaper accelerators

e Plasma wakefields:

Plasma cell

Electron ° D”Ven by Iasers or

i particle beams
 Accelerating,
 10-100 pm-scale (tiny!)

 Recent application: FELs?:?

+ Why not HEP?

—— [2] Wang et al., Nature 595, 516 (2021)
Beam direction [3] Pompili et al., Nature 605, 659 (2022)



Fundamental challenges: Prompting rethink of plasma accelerators

1. Staging problem: coupling beams between
plasma accelerators (stages)

» In- and out-coupling of drivers Bippm—

¢ RefOCUSIng beams — ChromathIty . ' | éteinkéetal., Nature 530, 190 (2016)




Fundamental challenges: Prompting rethink of plasma accelerators
Staging and stability

1. Staging problem: coupling beams between
plasma accelerators (stages)

* In- and out-coupling of drivers

eeeeeeeeee

* Refocusing beams — chromaticity

Steinke et al., Nature 530, 190 (2016)

fs time scale
~

2. Stability problem: extreme sensitivity

* um/fs tolerances on alignment/timing

4 length
scale

e |nstabilities

Particle-in-cell (PIC) simulation. Source: VisualPIC
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Near-term application: Strong-field QED

Tech demonstrator for high energy and stabllity

» Schwinger field: ~1018 V/m = high-power lasers
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* Collide high-power laser with high-energy e- = boost field ‘"‘""‘

» Experiments reached x =~ 0.3 (fraction of Schwinger field) s [75" 227 7

"~ Astra-Gemini

N I IOl iy Uiy . gy oy Iy Zeeaene

- ) g — RSSO TS SO S N S0 1) IO -

: : : ; 10
e X 21000 — no theory! (new physics, emergent properties?) laser intensity parameter & = ao
LUXE Collaboration, EPJ-ST 230, 2445 (2021)

/: High-energy
electron

(Yo > 10)

High-power
laser
(@0 » 1)

Blackburn et al., Phys. Plasmas 25, 083108 (2018)



Near-term application: Strong-field QED

Tech demonstrator for high energy and stabllity

o Schwinger field: ~1018 VV/m = high-power lasers
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» Experiments reached x = 0.3 (fraction of Schwinger field) s L[5 227 C

~ Astra-Gemini

e x = 10-100 — lab astrophysics (c.q., surface of magnetars) ol
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e X 21000 — no theory! (new physics, emergent properties?) laser intensity parameter & = &o
LUXE Collaboration, EPJ-ST 230, 2445 (2021)

/ High-energy
electron

(Yo > 10)

e Plasma-based SFQED machine — win-win

-2 for SFQED research:
cheap, high-energy e- = new experiments (y > 1)

High-power
laser
(@0 » 1)

e | for plasma accelerators:

“minimal viable product” for HEP
Blackburn et al., Phys. Plasmas 25, 083108 (2018) (hlgh energy/Stablllty_/OW quallty/rep' rate)



The SPARTA project

A flow chart

Novel and affordable

Problem: Performance gap currently too large,
accelerator technology

long timeline makes investment risky
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Ultimate goal for particle physics
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What are these proposed concepts?



New concept #1: Nonlinear plasma lenses

A new kind of plasma accelerator — solving staging

 Plasma lens = strong, compact focusing device

“Active” plasma lens
= discharge current

Linear
(chromatic)

B field (no taper)
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New concept #1: Nonlinear plasma lenses

A new kind of plasma accelerator — solving staging

 Plasma lens = strong, compact focusing device

* /dea: Achromatic beamline with nonlinear plasma lenses
— Beam quality preserved _ dischargs current
— Easy in/out-coupling of drivers

Nonlinear Linear
(achromatic) (chromatic)

1 B field (trans. taper) 1 B field (no taper)
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New concept #1: Nonlinear plasma lenses

A new kind of plasma accelerator — solving staging

* Plasma lens = strong, compact focusing device

* /|dea: Achromatic beamline with nonlinear plasma lenses S——
— Beam quality preserved Active’ piasma lens

= discharge current
— Easy in/out-coupling of drivers

Nonlinear Linear

(achromatic) (chromatic)
; B d (trans. taper) . _Bfield (no taper)
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Can we make this lens?



New concept #2: Self-correction mechanisms

* Achromatic beamline between stages — longitudinal dispersion (Rse)

_ stage
e ——— > [ e  mams RS e, T HI——> Application
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New concept #2: Self-correction mechanisms

* Achromatic beamline between stages — longitudinal dispersion (Rse)

* Discovery: Simulation shows feedback loop between field and beam — self-stabilization
— Damps energy spread and energy offset
— Greatly improves tolerances
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New concept #2: Self-correction mechanisms

A new Kind of plasma accelerator — solving stability

* Achromatic beamline between stages — longitudinal dispersion (Rse)

* Discovery: Simulation shows feedback loop between field and beam — self-stabilization
— Damps energy spread and energy offset
— Greatly improves tolerances
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Final goal: Blueprints for a strong-field QED machine




Final goal: Blueprints for a strong-field QED machine

o Step 1: Design a test facility for staging
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Final goal: Blueprints for a strong-field QED machine

o Step 1: Design a test facility for staging
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Final goal: Blueprints for a strong-field QED machine

Putting the solutions for staging and stability to the test

o Step 1: Design a test facility for staging

—
* Collab. with accelerator labs (SLAC, DESY interested)
» Step 2: Design a strong-field QED machine =
* Conceptual only, if built will be at €50-100M scale
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The plan

Three main objectives

Objective #1: Develop nonlinear plasma lenses
Objective #2: Investigate self-stabilization in plasma accelerators

Objective #3: Conceptual designs of multistage plasma-accelerator facilities

Year 1

Year 1

Year 2

Year 2

Year 3

Year 3

Year 4

Year 4

Year 5

Year 5

Year 5
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The plan

Three main objectives

Objective #1: Develop nonlinear plasma lenses Year 1 Year 2 Year 3 Year 4 Year 5

Objective #2: Investigate self-stabilization in plasma accelerators Year 1 Year 2 Year 3 Year 4 Year 5

Objective #3: Conceptual designs of multistage plasma-accelerator facilities | Year 1 Year 2 Year 3 Year 4 Year 5

« Team: Pl (Carl A. Lindstrem) + 2 postdocs + 2 PhDs

 Collaborations:

cEun)) @ =0 PAsigmaz LU M |

N4

Accelerator laboratories High-performance computing
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“But what will you actually do?”

Example of CERN-related experiments

* Plan for Objective #1:

* |dentify mechanism for making nonlinear plasma

lens.

e Construct the plasma lens

 Measure the magnetic field profile.

e Beam-based B-field measurements at the CLEAR

facility at CERN.

» Collaboration with DESY and Oxford University

L

o Similarly, Objective ;

:

2 Involves experiments at SLAC.
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Recent impact on HEP
New idea: plasma—-RF hybrid Higgs factory — next step after SFQED machine?

« Asymmetric collider concept — avoids positron acceleration in plasma

 “National scale” (~3 km, ~€2.5B) — fits on the campus of ~any national lab

Facility length: ~3.3 km

RF linac

Interaction point
(250 GeV c.o.m.)

e- drivers
53555550

(D0 222222222220202020202202220202220202020202020202020202202222)

) Plasma-accelerator linac
(31 GeV &) (500 GeV ) (16 stages, ~32 GeV per stage)

Scale: 500 m
The HALHF collider concept — Foster, D’Arcy & Lindstrom, New Journal of Physics (accepted, 2023)
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Recent impact on HEP
New idea: plasma—-RF hybrid Higgs factory — next step after SFQED machine?

« Asymmetric collider concept — avoids positron acceleration in plasma

 “National scale” (~3 km, ~€2.5B) — fits on the campus of ~any national lab

Facility length: ~3.3 km

Interaction point « > e- drivers RF linac
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-_— SPARTA
(higher energy & rep. rate)
500 GeV o Plasma-accelerator linac
(31 GeV &) ( eV e) (16 stages, ~32 GeV per stage)

Scale: 500 m
The HALHF collider concept — Foster, D’Arcy & Lindstrom, New Journal of Physics (accepted, 2023)

 Massive interest from plasma-accelerator and linear-collider community
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SPARTA: “aoingof

Objective #1:
Nonlinear

plasma lens /\

aaaaaa

“lasma Accelerators for Realizing Timely Applications

Objective #3:
SFQED Long-term impact:

machine /\ Next linear collider?

* |nnovative solution to the cost problems in HEP
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SPARTA: Staging of Plasma Accelerators for Realizing Timely Applications

Objective #1: Objective #3:
Nonlinear SFQED Long-term impact:
plasma lens /\ machine /\ Next linear collider?

aaaaaa

* |nnovative solution to the cost problems in HEP
* Realizing two groundbreaking new concepts:
(1) Nonlinear plasma lenses: solving the staging problem

(2)

* (Goal: blueprints for a strong-field QED machine (a technology demonstrator)
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The SPARTA project

Staging of Plasma Accelerators
for Realizing Timely Applications

Starts
1 Jan 2024

O years

Thank you
for listening!




